Back to Top Skip to main content Skip to sub-navigation

Incidence and Prevalence of Selected Refractive Errors, Active Component, U.S. Armed Forces, 2001–2018

Image of U.S. Army Spc. Angel Gomez, right, assigned to Charlie Company, 173rd Brigade Support Battalion, wraps the eye of a fellow Soldier with a simulated injury, for a training exercise as part of exercise Saber Junction 16 at the U.S. Army’s Joint Multinational Readiness Center in Hohenfels, Germany, April 5, 2016. Saber Junction is a U.S. Army Europe-led exercise designed to prepare U.S., NATO and international partner forces for unified land operations. The exercise was conducted March 31-April 24. (U.S. Army photo by Pfc. Joshua Morris). U.S. Army Spc. Angel Gomez, right, assigned to Charlie Company, 173rd Brigade Support Battalion, wraps the eye of a fellow Soldier with a simulated injury, for a training exercise as part of exercise Saber Junction 16 at the U.S. Army’s Joint Multinational Readiness Center in Hohenfels, Germany, April 5, 2016. Saber Junction is a U.S. Army Europe-led exercise designed to prepare U.S., NATO and international partner forces for unified land operations. The exercise was conducted March 31-April 24. (U.S. Army photo by Pfc. Joshua Morris)

Recommended Content:

Medical Surveillance Monthly Report

Abstract

During 2001–2018, there were approximately 1.38 million incident diagnoses of myopia, 1.21 million incident diagnoses of astigmatism, and 492,000 incident diagnoses of hyperopia among active component service members (crude overall incidence rates of 7.8, 6.6, and 2.2 diagnoses per 100 person-years, respectively). Incidence rates of all 3 conditions were higher among women compared to men. Service members in the Marine Corps, enlisted personnel, and those working in other/unknown military occupations had higher overall rates of incident myopia diagnoses compared to their respective counterparts. Incidence rates of astigmatism diagnoses were similar across all services and among both enlisted personnel and officers. Overall rates of hyperopia diagnoses were similar across all race/ethnicity groups and service branches and among both enlisted personnel and officers. However, across occupational groups, overall rates of hyperopia and astigmatism diagnoses were highest among service members working in healthcare occupations. Future analyses should focus on the specific effects of military refractive surgery programs on the readiness of service members.

What are the findings 

This article updates previous reports and focuses on the types of refractive error amenable to refractive surgery interventions. During 2001–2018, myopia and astigmatism were the most common refractive errors at 1.4 million and 1.2 million incident diagnoses, respectively, among active component service members of all occupational groups. The crude annual lifetime prevalence was 38.5% for myopia and 32.9% for astigmatism.

What is the impact on readiness and force health protection?

Disorders of refraction directly affect the ability to function in a military environment. Myopia, astigmatism, and hyperopia remain a consistent concern for the operational force. The data presented here allow for ongoing monitoring of refractive error to direct interventions such as refractive surgery.

Background

Refractive errors are a common cause of impaired vision. The World Health Organization estimates that 153 million people worldwide live with visual impairment due to uncorrected refractive errors.1Refractive errors occur when the focusing power of the eye does not allow for a sharp image on the retina, resulting in a blurred image and loss of detail. Myopia typically results from a longer axial length of the eye, causing images to be defocused in front of the retina and faraway objects to appear blurry. Hyperopia is usually due to a shorter axial length of the eye, causing an image to be defocused at a point behind the retina and resulting in distant objects being seen more clearly than objects that are near. Astigmatism typically results from variable curvature of the corneal surface, causing an image to be defocused along multiple points of the optical pathway.

Optimal visual performance in the setting of refractive error usually requires correction, either through eyeglasses, contact lenses, or refractive surgery. Uncorrected refractive errors can negatively affect functioning, quality of life, and work productivity.2 Refractive errors have been linked to increased ocular morbidity; for example, myopia is a known risk factor in the development of retinal detachment, even at low levels of refractive error.3

Across military populations, refractive errors have multiple implications for readiness and operational effectiveness. Suboptimal visual acuity due to refractive error has been shown to affect target discrimination (positive identification) and marksmanship performance among military personnel.4 Effects of refractive error on visual performance and associated ocular disease increase with higher degrees of refractive error. As a result, individuals with hyperopia, myopia, or astigmatism in excess of -8.00 or +8.00 diopters spherical equivalent, astigmatism in excess of 3.00 diopters, or a history of laser refractive surgery for that degree of refractive error do not meet the medical standards for appointment, enlistment, or induction into U.S. military service.5

In military populations, adequate characterization of the magnitude and trends of refractive errors may inform readiness and performance enhancement efforts such as refractive surgery programs. Adequate characterization may also inform planning for refraction and optical fabrication resources. In this report, myopia, astigmatism, and hyperopia codes were chosen to approximate the clinically important refractive error categories used in previous publications.6 For military populations, these categories would also be the most relevant since these conditions are potentially amenable to refractive surgery procedures. This report updates the incidence and prevalence rates of newly diagnosed disorders of refraction among members of the active component of the U.S. Armed Forces during 2001–2018.

Methods

The surveillance period was 1 January 2001 to 31 December 2018. The surveillance population included all individuals who served in the active component of the U.S. Army, Navy, Air Force, or Marine Corps at any time during the surveillance period. Diagnoses of disorders of refraction were ascertained from records maintained in the Defense Medical Surveillance System (DMSS) that document outpatient encounters of active component service members. Such records reflect care in fixed military treatment facilities of the Military Health System (MHS) and in civilian sources of health care underwritten by the Department of Defense (DOD).

Case-defining diagnoses are shown in Table 1. Cases of myopia, hyperopia, and astigmatism were analyzed separately. An incident case of refraction disorder was defined by at least 1 outpatient medical encounter with a qualifying diagnosis in either the first or second diagnostic position. The incidence date was considered the date of the first qualifying outpatient encounter and an individual was counted as an incident case only once per lifetime. Service members with case-defining refractive disorder diagnoses before the start of the surveillance period (i.e., prevalent cases) were excluded from the analysis. For the incidence rate calculations, person-time at risk included all active component military service time before the date of incident diagnosis, termination of military service, or the end of the surveillance period, whichever came first. Incidence rates were calculated as incident refractive disorder diagnoses per 100 person-years (p-yrs).

Military lifetime prevalence was estimated for each refraction disorder for each year in the surveillance period. During each year of the 18-year period, the annual prevalence was calculated as the percentage of service members who had ever been diagnosed with the refraction disorder. An individual was identified as a prevalent case during a given year of the surveillance period if he or she was in active component service on 1 July of the given year and was diagnosed as an incident case on or before 1 July of that year (including those who were diagnosed as an incident case before the start of the surveillance period). The denominator for annual prevalence calculations consisted of the total number of service members in active component service on 1 July of each year. Annual prevalence estimates were calculated as the number of prevalent cases per 100 active component service members on 1 July.

Results

Between 2001 and 2018, there were approximately 1.38 million incident diagnoses of myopia, 1.21 million incident diagnoses of astigmatism, and 492,000 incident diagnoses of hyperopia among active component service members, which corresponded to crude (unadjusted) overall incidence rates of 7.8, 6.6, and 2.2 diagnoses per 100 p-yrs, respectively (Table 2).

For myopia, overall incidence was higher among females (11.6 per 100 p-yrs) compared to males (7.2 per 100 p-yrs). When stratified by age group, the overall rate of incident myopia diagnoses was highest among service members aged 19 years or younger (21.2 per 100 p-yrs) (Table 2). Compared to other race/ethnicity groups, Asian/Pacific Islanders had the highest overall incidence of myopia diagnoses (9.8 per 100 p-yrs) and American Indians/Alaska Natives had the lowest (5.2 per 100 p-yrs) (Table 2). Service members in the Marine Corps (8.9 per 100 p-yrs), enlisted personnel (8.0 per 100 p-yrs), and those working in other/unknown military occupations (12.2 per 100 p-yrs) had higher overall rates of incident myopia diagnoses compared to their respective counterparts. The high rate for those in the non-specific category of “other/unknown” was largely due to the fact that 45% (n=187,536) of the cases were among recruit trainees.

Overall incidence of astigmatism diagnoses was highest among females (9.0 per 100 p-yrs) and those in the youngest (19 years and younger: 9.4 per 100 p-yrs) and oldest (55+ years: 8.5 per 100 p-yrs) age groups (Table 2). Overall rates of incident astigmatism diagnoses were lowest among American Indian/Alaska Native service members (4.3 per 100 p-yrs) and similar among service members in the other race/ethnicity groups (range: 6.4–7.2 per 100 p-yrs). Incidence rates of astigmatism diagnoses were similar across all services and among both enlisted personnel and officers. However, across occupational groups, overall rates of incident astigmatism diagnoses were highest among service members working in health care (8.6 per 100 p-yrs).

For hyperopia, overall incidence was higher in females (2.9 per 100 p-yrs) compared to males (2.1 per 100 p-yrs) and highest among those in the oldest age group (aged 55 years and older: 5.0 per 100 p-yrs). Overall rates of hyperopia diagnoses were similar across all race/ethnicity groups, service branches, and among both enlisted personnel and officers. However, overall incidence of this condition was highest among service members in healthcare occupations (Table 2).

Crude annual rates of incident diagnoses of myopia and astigmatism decreased 40.9% and 41.3%, respectively, between 2001 and 2010. Incidence rates then increased 15.9% and 50.0% for myopia and astigmatism, respectively, between 2010 and 2018 (Figure 1). The crude annual incidence of hyperopia diagnoses increased slightly over the course of the surveillance period, from 1.8 per 100 p-yrs in 2001 to 2.6 per 100 p-yrs in 2018.

During the 18-year surveillance period, the median crude annual prevalence was 38.5% for myopia, 32.9% for astigmatism, and 12.0% for hyperopia (data not shown). In both sexes, the median crude annual lifetime prevalence of each type of eye disorder of refraction increased with increasing age (Table 3). For myopia and astigmatism, crude annual prevalence rates increased markedly between 2001 and 2007 before leveling off and remaining relatively stable for the remainder of the surveillance period (Figure 2). In contrast, crude annual prevalence rates of hyperopia increased gradually over the course of the surveillance period.

Editorial Comment

This report demonstrates the high frequency of myopia, astigmatism, and hyperopia among active component service members across all subgroups examined. Results of the current analysis were consistent with findings of the previous MSMR report.6 Analysis of vision examination data from the 1999–2004 U.S. National Health and Nutrition Examination Survey (NHANES) yielded age-adjusted point prevalence estimates of myopia, astigmatism, and hyperopia of 33.1%, 36.2%, and 3.6%, respectively.7 The prevalence of hyperopia was considerably higher in the current analysis. However, the current analysis measured lifetime prevalence whereas the NHANES measured point prevalence (i.e., the percentage of the U.S. population with current hyperopia).7

The impact of refractive error on military members can be different than on other populations. Military personnel have defined and demanding physical performance criteria. Service members are frequently classified as “tactical athletes” because of high physical performance demands under stressful conditions often in austere environments.8 Refractive error, even when corrected, has been shown to negatively affect both depth perception and peripheral vision in young athletes.9 Many athletes will prefer either use of contact lenses or refractive surgery over eyeglasses.10

Certain limitations should be considered when interpreting the findings of this report. First, service members are, in many respects, not representative of the general U.S. civilian population. Because service members have been screened for disorders of refraction before joining the military, the visual disorders diagnosed among them do not include the most severe conditions. In addition, refractory surgery among the general civilian population has become more common, and candidates for military service may elect to have refractive surgery before entering service. This could decrease the incidence and prevalence of refractive error over time. Further analysis is planned to specifically evaluate the incidence and temporal trends of refractive error among the recruit trainee population. Such an analysis may provide better insight into the incidence of refractive error among individuals entering the military during the surveillance period.

Refractive surgery procedures after entering the military may also influence the prevalence of refractive errors. For example, a recent report showed that the number of refractive procedures (both photorefractive keratectomy [PRK]/laser epithelial keratomileusis [LASEK] and laser-assisted in-situ keratomileusis [LASIK]) among active component service members averaged 12,157 per year from 2005 through 2014.11 However, the direct impact of refractive procedures among service members on incidence and prevalence of refractive error was not evaluated in this report. Extrapolation of the findings of the current analysis to the general U.S. population should be undertaken with this limitation in mind.

The increasing prevalence of hyperopia found in this report may be due to increasing age among the surveillance population. Hyperopia incidence increases over time because of changes in the optical system of the eye associated with aging. However, the current report did not examine the potential change in age among cases of hyperopia during the study period.

Another limitation is related to the new electronic health record for the MHS, MHS GENESIS, which was implemented at several military treatment facilities during 2017. Medical data from sites that are using MHS GENESIS are not available in the DMSS. These sites include Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center. Therefore, medical encounters for individuals seeking care at any of these facilities during 2017–2018 were not included in this analysis.

This analysis did not attempt to ascertain the nature or frequency of any corrective measures of treatments, such as prescriptions for contact lenses or corrective surgery. For active component service members, contact lens use is limited to few operational situations.11 Some aviation personnel require contact lens correction of refractive error for optimal use of instruments. Contact lens use in austere locations has been associated with high risk for microbial keratitis.12 Refractive surgery has been associated with both improved military readiness and vision-related quality of life (including military-specific tasks such as use of night vision goggles and weapons-based tasks).13 However, refractive surgery services are limited by location and necessary prioritization of resources. The correction of refractive errors in U.S. military personnel to optimize their readiness and performance does present some ongoing challenges. Future studies should focus on the specific effects of military refractive surgery programs on readiness of service members.

In addition, because refractive surgery has become very common in the general population, the proportion of incoming recruits with refractive errors may be decreasing over time. A history of refractive surgery is not disqualifying from military service and having had such surgery may not be disclosed at the time of entry into military service or documented in a recruit’s medical records. If the proportion of recruit trainees with (uncorrected) refractive error has been decreasing, then the prevalence across the active component force would decrease over time. Such declining prevalence could affect the refractive surgery programs across the DOD. Future examination of recent trends in the prevalence of refractive disorders among recruits is warranted.

Author affiliations: Department of Defense/Veterans Affairs Vision Center of Excellence, Defense Health Agency Research and Development Directorate (COL Reynolds); Armed Forces Health Surveillance Branch, Defense Health Agency (Dr. Taubman, Dr. Stahlman)

Disclaimer: The contents, views, or opinions expressed in this publication are those of the author(s) and do not necessarily reflect the official policy or position of the Defense Health Agency, Department of Defense, or the U.S. Government.

References

1. Resnikoff S, Pascolini D, Mariotti SP, Pokharel GP. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bull World Health Organ. 2008;86(1):63–70.

2. Schneider J, Leeder SR, Gopinath B, Wang JJ, Mitchell P. Frequency, course, and impact of correctable visual impairment (uncorrected refractive error). Surv Ophthalmol. 2010;55(6):539–560.

3. The Eye Disease Case-Control Study Group. Risk factors for idiopathic rhegmatogenous retinal detachment. Am J Epidemiol. 1993;137(7)49–57.

4. Hatch BC, Hilber DJ, Elledge JB, Stout JW, Lee RB. The effects of visual acuity on target discrimination and shooting performance. Optom Vis Sci. 2009;86(12): e1359–e1367.

5. Office of the Under Secretary of Defense for Personnel and Readiness. Department of Defense Instruction 6130.03 Medical Standards for Appointment, Enlistment, or Induction in the Military Services. 6 May 2018.

6. O’Donnell FL, Taubman SB, Clark LL. Incidence and prevalence of diagnoses of eye disorders of refraction and accommodation, active component service members, U.S. Armed Forces, 2000–2014. MSMR. 2015;22(3):11–16.

7. Vitale S, Sperduto RD, Ferris FL 3rd. Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004. Arch Ophthalmol. 2009;127(12):1632–1639.

8. Sefton JM, Burkhardt TA. Introduction to the Tactical Athlete Special Issue. J Athl Train. 2016;51(11):845.

9. Chang ST, Liu YH, Lee JS, See LC. Comparing sports vision among three groups of soft tennis adolescent athletes: normal vision, refractive error with and without correction. Indian J Ophthalmol. 2015;63(9):716–721.

10. Zeri F, Pitzalis S, Di Vizio A, et al. Refractive error and vision correction in a general sports-playing population. Clin Exp Optom. 2018;101(2):225–236.

11. Blitz JB, Hunt DJ, Cost AA. Post-refractive surgery complications and eye disease, active component, U.S. Armed Forces, 2005–2014. MSMR. 2016;23(5):2–11.

12. Musa F, Tailor R, Gao A, Hutley E, Rauz S, Scott RA. Contact lens-related microbial keratitis in deployed British military personnel. Br J Ophthalmol. 2010;94(8):988–993.

13. Sia RK, Ryan DS, Rivers BA, et al. Vision-related quality of life and perception of military readiness and capabilities following refractive surgery among active duty U.S. military service members.J Refract Surg. 2018;34(9):597–603.

Annual rates of incident diagnoses of eye disorders of refraction, active component, U.S. Armed Forces, 2001–2018

Annual prevalence rates of eye disorders of refraction, active component, U.S. Armed Forces, 2001–2018

ICD-9 and ICD-10 diagnostic codes used to identify disorders of refraction

Incident diagnoses and incidence ratesa of eye disorders of refraction, active component, U.S. Armed Forces, 2001–2018

Median annual prevalencea of disorders of refraction and accommodation, by age group and sex, active component, U.S. Armed Forces, 2001–2018

You also may be interested in...

Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2006–2021

Article
4/1/2022
Marine Corps Cpl. Luis Alicea drinks water after a combat conditioning exercise at Naval Air Station Joint Reserve Base New Orleans, May 20, 2019. Photo By: Marine Corps Lance Cpl. Jose Gonzalez.

Exertional (or exercise-associated) hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 mEq/L) that develops during or up to 24 hours following prolonged physical activity. Acute hyponatremia creates an osmotic imbalance between fluids outside and inside of cells.

Recommended Content:

Medical Surveillance Monthly Report

Exertional Heat Illness at Fort Benning, GA: Unique Insights from the Army Heat Center

Article
4/1/2022
Navy Petty Officer 3rd Class Ryan Adams is being used as an example victim for cooling a heat casualty at the bi-annual hot weather standard operating procedure training aboard Marine Corps Base Camp Lejeune, N.C., Aug. 24. Adams is demonstrating the "burrito" method used to cool a heat related injury victim. Photo by Pfc. Joshua Grant.

Exertional heat illness (hereafter referred to as heat illness) spans a spectrum from relatively mild conditions such as heat cramps and heat exhaustion, to more serious and potentially life-threatening conditions such as heat injury and exertional heat stroke (hereafter heat stroke).

Recommended Content:

Medical Surveillance Monthly Report

Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2017–2021

Article
4/1/2022
The Embry-Riddle Army ROTC Ranger Challenge team heads out on the 12-mile road march after completing the timed obstacle course event of the 6th Brigade Army ROTC Ranger Challenge January 14, 2022 at Fort Benning, Ga. The Titan Brigade’s Ranger Challenge took place at Fort Benning, Ga. January 13-15, 2022. Photo by Capt. Stephanie Snyder

Exertional rhabdomyolysis is a potentially serious condition that requires a vigilant and aggressive approach. Some service members who experience exertional rhabdomyolysis may be at risk for recurrences, which may limit their military effectiveness and potentially predispose them to serious injury.

Recommended Content:

Medical Surveillance Monthly Report

Heat Illness, Active Component, U.S. Armed Forces, 2021

Article
4/1/2022
Airmen participate in the 13th Annual Fallen Defender Ruck March at Joint Base San Antonio, Nov. 6, 2020. The event honors 186 fallen security forces, security police and air police members who have made the ultimate sacrifice. Photo By: Sarayuth Pinthong, Air Force.

From 2020 to 2021, the rate of incident heat stroke was relatively stable while the rate of heat exhaustion increased slightly

Recommended Content:

Medical Surveillance Monthly Report

Brief report: Using syndromic surveillance to monitor MIS-C associated with COVID-19 in Military Health System beneficiaries

Article
3/1/2022
Air Force 1st Lt. Anthony Albina, a critical care nurse assigned to Joint Base Andrews, Md., checks a patient’s breathing and heart rate during an intubation procedure while supporting COVID-19 response operations in Cleveland, Jan. 20, 2022.

SARS CoV-2 and the illness it causes, COVID-19, have exacted a heavy toll on the global community. Most of the identified disease has been in the elderly and adults. The goal of this analysis was to ascertain if user-built ESSENCE queries applied to records of outpatient MHS health care encounters are capable of detecting MIS-C cases that have not been identified or reported by local public health departments.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Medical Separation from Service Among Incident Cases of Osteoarthritis and Spondylosis, Active Component, U.S. Armed Forces, 2016–2020

Article
3/1/2022
Marines hike to the next training location during Exercise Baccarat in Aveyron, Occitanie, France, Oct.16, 2021. Exercise Baccarat is a three-week joint exercise with Marines and the French Foreign Legion that challenges forces with physical and tactical training. Photo By: Marine Corps Lance Cpl. Jennifer Reyes

Osteoarthritis (OA) is the most common adult joint disease and predominantly involves the weight-bearing joints. This condition, including spondylosis (OA of the spine), results in significant disability and resource utilization and is a leading cause of medical separation from military service.

Recommended Content:

Medical Surveillance Monthly Report

Obesity prevalence among active component service members prior to and during the COVID-19 pandemic, January 2018–July 2021

Article
3/1/2022
Maintaining a healthy weight is important for military members to stay fit to fight. The body mass index is a tool that can be used to determine if an individual is at an appropriate weight for their height. A person’s index is determined by their weight in kilograms divided by the square of height in meters. (U.S. Air Force photo illustration by Airman 1st Class Destinee Sweeney)

This study examined monthly prevalence of obesity and exercise in active component U.S. military members prior to and during the COVID-19 pandemic. These results suggest that the COVID-19 pandemic had a small effect on the trend of obesity in the active component U.S. military and that obesity prevalence continues to increase.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Refractive Surgery Trends at Tri-Service Refractive Surgery Centers and the Impact of the COVID-19 Pandemic, Fiscal Years 2000–2020

Article
3/1/2022
Cadet Saverio Macrina, U.S. Military Academy West Point, receives corneal cross-linking procedure at Fort Belvoir Community Hospital, Va., Nov. 21, 2016. (DoD photo by Reese Brown)

Since the official introduction of laser refractive surgery into clinical practice throughout the Military Health System (MHS) in fiscal year 2000, these techniques have been heavily implemented in the tri-service community to better equip and improve the readiness of the U.S. military force.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2021

Article
3/1/2022
Mosquitos – like this one, collected as part of a military study in North Carolina – were used during USAMRDC’s initial RTS,S vaccine studies nearly 40 years ago. (Photo courtesy: AFC Kimberly Barrera)

Malaria infection remains an important health threat to U.S. service members who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. In 2021, a total of 20 service members were diagnosed with or reported to have malaria.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Health care burden attributable to osteoarthritis and spondylosis, active component, U.S. Armed Forces, 2016–2020

Article
2/1/2022
Air Force security forces trainees climb a hill during a 3-mile ruck march to commemorate National Police Week at Joint Base San Antonio, May 13, 2019. Photo By: Sarayuth Pinthong, Air Force

This snapshot summarizes the total numbers of inpatient and outpatient encounters with an OA or spondylosis diagnosis in the first diagnostic position and the total numbers of unique individuals affected by these conditions during the same 5-year surveillance period.

Recommended Content:

Medical Surveillance Monthly Report

A new approach to categorization of ocular injury among U.S. Armed Forces

Article
2/1/2022
Air Force and Space Force Surgeon General Lt. Gen. Dorothy Hogg receives an eye exam from Air Force Reserve Maj. Leslie Wilderson at Joint Base Anacostia-Bolling, Washington, D.C., March 26, 2021. Photo By: Air Force Staff Sgt. Kayla White

Ocular injuries present an ongoing threat to readiness and retention of service members. This report describes a new approach to categorizing ocular injury using Military Health System data, the application of an algorithm to a dataset, and the verification of the results using an audit of clinical data.

Recommended Content:

Medical Surveillance Monthly Report

Diagnosis of hepatitis C infection and cascade of care in the active component, U.S. Armed Forces, 2020

Article
2/1/2022
Navy Petty Officer 2nd Class Cecil Dorse, left, and Navy Petty Officer 3rd Class Janet Rosas test blood samples aboard the Military Sealift Command hospital ship USNS Comfort while the ship is in New York City in support of the nation’s COVID-19 response, April 6, 2020. Photo By: Navy Petty Officer 2nd Class Sara Eshleman

Hepatitis C virus (HCV) infection rates are rising in the U.S. despite widely available tools to identify and effectively treat nearly all of these cases. This cross-sectional study aimed to use laboratory data to evaluate the prevalence of HCV diagnoses among active component U.S. military service members.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Lengths of Hospital Stays for Service Members Diagnosed with Sepsis, Active Component, U.S. Armed Forces, 2011–2020

Article
1/1/2022
The (left to right) Senior Airman Austin Shrewsbury, 88th Diagnostics and Therapeutic Squadron medical laboratory technician, works with student, Airman 1st Class Taylor Altman, 88th Diagnostics and Therapeutic Squadron medical laboratory technician, to identify bacteria of patient’s cultures inside the microbiology laboratory at Wright-Patterson Air Force Base medical center June 30, 2017.

Sepsis is a serious and life-threatening organ dysfunction caused by a dysregulated host response to infection. In the U.S., sepsis is a leading cause of in-hospital mortality and 1 of the most expensive conditions treated in U.S. hospitals.

Recommended Content:

Medical Surveillance Monthly Report

Description of a COVID-19 Beta Variant Outbreak, Joint Base Lewis-McChord, WA, February–March 2021

Article
1/1/2022
U.S. Army Soldiers from 1-17th Infantry Battalion, 2nd Stryker Brigade, 2nd Infantry Division, clear an objective during the training exercise Bayonet Focus 19-02 at Yakima Training Center, Wash., May 6, 2019. Bayonet Focus is a training exercise designed to assess Soldiers’ ability to preform tasks and complete objectives under conditions experienced during combat situations. (U.S. Army photo by Spc. Angel Ruszkiewicz)

This report describes an outbreak of SARS-CoV-2, the causative agent of COVID-19, that peaked during 21–26 February 2021 and was tied to a single military training event. A total of 143 laboratory-confirmed cases were identified.

Recommended Content:

Medical Surveillance Monthly Report

COVID-19 and Depressive Symptoms Among Active Component U.S. Service Members, January 2019–July 2021

Article
1/1/2022
With the holiday season upon us, the cold, dark days that winter brings, and the social distancing and movement restrictions brought about by COVID-19, it’s not uncommon for people to feel depressed. (Photo by Erin Bolling)

This study examined the rates of depressive symptoms in active component U.S. service members prior to and during the COVID-19 pandemic and evaluated whether SARS-CoV-2 test results (positive or negative) were associated with self-reported depressive symptoms.

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 12
Refine your search
Last Updated: August 04, 2022

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.