Back to Top Skip to main content

Incident and Recurrent Cases of Central Serous Chorioretinopathy, Active Component, U.S. Armed Forces, 2001–2018

A phoropter is an instrument used to determine an individual’s eyeglass prescription by measuring the eye’s refractive error and switching through various lens until the persons vision is normal. (U.S. Air Force photo by Airman Dennis Spain) A patient looks through a phoropter at Hurlburt Field, Fla., Jan. 9, 2017. A phoropter is an instrument used to determine an individual’s eyeglass prescription by measuring the eye’s refractive error and switching through various lens until the persons vision is normal. (U.S. Air Force photo by Airman Dennis Spain)

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

Central serous chorioretinopathy (CSCR) is a condition that affects central visual function. It can produce blurred and/or distorted vision that can impact the performance of military duties. CSCR can recur in susceptible individuals. Incident cases of CSCR among active component service members were found to average 18.3 per 100,000 person-years (p-yrs) during 2001–2018. Incidence rates increased during the surveillance period by 60.7% and were more common with increasing age. Overall rates of incident CSCR diagnoses were highest among Air Force (20.7 per 100,000 p-yrs) and Navy members (19.9 per 100,000 p-yrs) and lowest among Marine Corps members (12.5 per 100,000 p-yrs). Pilot/air crew occupational groups had rates almost twice that of other groups. Annual recurrence rates increased 71.4% over the course of the 18-year period.

WHAT ARE THE NEW FINDINGS?    

This is the first MSMR report of the incidence of CSCR among members of the U.S. Armed Forces. More than 4,400 individuals received incident diagnoses of CSCR during the 18-year surveillance period. Rates of incident CSCR diagnoses and rates of recurrent diagnoses increased from 2001 through 2018. Across the services, overall rates of CSCR were highest among those in pilot/air crew occupations, with comparable rates observed among Navy members in combat related occupations.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

CSCR can affect critical visual performance by degrading central visual acuity. The acute disease typically lasts about 3 months, leading to operational limitations. Even after the resolution of acute symptoms, residual effects on vision may remain. Recurrences are commonly reported and may result in prolonged periods of non-deployability or non-retainability of service members.

BACKGROUND

Central serous chorioretinopathy (CSCR) is caused by fluid under the retina in the subretinal space. Fluid accumulation causes anatomic and functional changes affecting visual function. Typical symptoms include objects appearing smaller than normal (micropsia), straight lines appearing wavy (metamorphopsia), or partial loss or distortion of a portion of the central visual field. Symptoms may be more subtle as well and can include loss of contrast sensitivity (the ability to distinguish between bright and dim parts of an image) and color saturation.1 CSCR is the fourth most common cause of retinopathy after age-related macular degeneration, diabetic retinopathy, and branch retinal vein occlusion. CSCR is a significant cause of both temporary and permanent loss of visual function among individuals aged 30–50 years.1,2

Although the etiology of CSCR remains poorly understood, a number of risk factors for the condition have been identified. Increased cortisol from either exogenous or endogenous sources has been associated with increased risk of developing CSCR.3,4 Development of CSCR has often been associated with a “Type A” behavior pattern.5 CSCR most commonly is a self-limiting condition, with resolution of retinal changes and return to baseline visual acuity within 3 months.1 The condition can recur, and recurrences of CSCR have been reported in up to one-half of patients within 1 year.Some patients may have a more prolonged course of the disease, with 15% of patients having signs and symptoms lasting longer than 6 months (chronic CSCR).7

The best available estimate of the incidence rates of CSCR in the U.S. comes from a population-based retrospective study in Olmstead County, MN, during 1980–2002.8 This study reported an overall incidence rate of 5.8 per 10,000 persons. Age-adjusted incidence was 9.9 per 100,000 persons among men and 1.7 per 100,000 persons for women.8 The reported male-to-female ratio ranged from 2.2:1 to 5.7:1.8 These numbers are reported in both population-based retrospective cohort studies and case-control studies.8 The current report summarizes the frequencies, rates, and temporal trends of CSCR among active component service members during 2001–2018.

METHODS

The surveillance period was 1 January 2001 to 31 December 2018. The surveillance population included all individuals who served in the active component of the U.S. Army, Navy, Air Force, or Marine Corps at any time during the surveillance period. Diagnoses of CSCR were ascertained from records maintained in the Defense Medical Surveillance System (DMSS) that document outpatient encounters of active component service members. Such records reflect care in fixed military treatment facilities of the Military Health System (MHS) and in civilian sources of health care underwritten by the Department of Defense.

International Classification of Diseases (ICD) codes for the case-defining diagnoses of CSCR are shown in Table 1. For surveillance purposes, an incident case was defined by at least 1 outpatient medical encounter with a qualifying diagnosis in any diagnostic position. The incidence date was the date of the first qualifying outpatient encounter and an individual was counted as an incident case only once per lifetime. Person-time at risk included all active component military service time before the date of incident diagnosis, termination of military service, or the end of the surveillance period, whichever came first. Incidence rates were calculated as incident CSCR diagnoses per 100,000 person-years (p-yrs). Prevalent cases (i.e., service members with case-defining diagnoses occurring before the start of the surveillance period) were excluded from the analysis.

Recurrent cases of CSCR were identified using a 120-day gap rule in that there had to be at least 120 days of no outpatient diagnoses for CSCR before the next case could be counted. Incident cases were not included in the analysis of recurrent cases. The person-time at risk for the analysis of recurrent cases included active component military service time from the incident case diagnosis to termination of military service or the end of the surveillance period, whichever came first.

RESULTS

During 2001–2018, incident diagnoses of CSCR averaged 18.3 per 100,000 p-yrs (Table 2). The crude overall incidence rate of CSCR diagnoses among males was more than 2.5 times that among females (20.2 per 100,000 p-yrs and 7.5 per 100,000 p-yrs, respectively). Overall rates increased markedly with increasing age, with the rates among service members 40 years or older almost 30 times the rate among those less than 20 years old. This age distribution is consistent with the finding of the highest rates among the most senior rank group (O4–O9 and W4–W5).

Across the services, overall rates of incident CSCR diagnoses were highest among Air Force (20.7 per 100,000 p-yrs) and Navy members (19.9 per 100,000 p-yrs) and lowest among Marine Corps members (12.5 per 100,000 p-yrs). Overall rates among military occupational groups showed considerable variation, with service members in the pilot/air crew occupations having a rate almost 2 times the rates of those in other occupational groups (with the exception of healthcare). Service members working as pilots/air crew had the highest overall incidence rates of CSCR diagnoses in all 4 of the services (Table 3). Of note, within the combat-related occupations, Navy members had an overall incidence rate 1.8 and 3.3 times that of Army and Marine Corps members, respectively. Service members in healthcare occupations had the second highest overall rate of incident CSCR diagnoses during the surveillance period.

Crude annual rates of incident CSCR diagnoses increased during the surveillance period by 60.7% and fluctuated between a low of 13.0 per 100,000 p-yrs in 2001 and a high of 22.4 per 100,000 p-yrs in 2014 (Figure). Annual recurrence rates increased 71.4% over the course of the 18-year period. The largest increase in recurrence rates over time was seen among members of the Marine Corps, and the smallest increase was observed among Navy members (data not shown).

EDITORIAL COMMENT

This is the first MSMR report focused on the incidence and distribution of CSCR among active component service members. Compared to previously reported rates of CSCR in U.S. civilian populations,8 rates among the active component were higher for both men and women, with male-to-female ratios within the previously reported ranges (male rate 2.7 times that of female). These elevated incidence rates are not directly comparable because of differences in methodology (e.g., the rates in this report are described in p-yrs, while the rates in other reports are per 100,000 people). Despite this comparability issue, the elevated rates may represent a unique risk factor profile for active component service members or increased recognition and diagnosis in the population.

The higher rates of incident CSCR diagnoses seen among service members working in pilot/air crew occupations are notable. These occupations have strictly defined visual function requirements across all services. In previous reports of CSCR among military aviators, service members with single episodes of CSCR usually recovered vision within aviation standards, but recurrences were more likely to result in permanent visual changes.9 The increased rates found among Navy combat-related occupational groups warrants further investigation.

An important consideration when interpreting increasing incidence rates of CSCR diagnoses is the advance in diagnostic capabilities. Optical coherence tomography (OCT), a diagnostic modality that provides a cross-sectional view of the retina, was developed in 1991.10 OCT is frequently used to diagnosis and monitor CSCR and has increased in fidelity since it was first introduced.11 The increased availability and utilization of OCT over the course of the surveillance period should be taken into account when interpreting the reported increased rates.

An additional limitation of the current analysis is related to the implementation of MHS GENESIS, the new electronic health record for the MHS. Medical data from sites that were using MHS GENESIS were not available in the DMSS. These sites include Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center. Therefore, medical encounters and person-time data for individuals seeking care at any of these facilities during 2017 and 2018 were excluded from the analysis. This is notable since Madigan Army Medical Center has a retina service that would be expected to be a referral center for patients with CSCR. Despite a possible attenuation of counts and rates, this report provides critical epidemiological information concerning this important ocular condition.

 

Acknowledgments: The authors would like to acknowledge the vitreoretinal specialist review by LTC Marissa L Wedel, MC, USA.

Author affiliations: Department of Defense/Veterans Affairs Vision Center of Excellence, Defense Health Agency Research and Development Directorate (COL Reynolds); contract personnel in support of the Department of Defense/Veterans Affairs Vision Center of Excellence (Dr. Karesh); Armed Forces Health Surveillance Branch, Defense Health Agency (Mr. Oh, Dr. Stahlman)

Disclaimer: The contents, views, or opinions expressed in this publication are those of the author(s) and do not necessarily reflect the official policy or position of the Defense Health Agency, Department of Defense, or the U.S. Government.

 

REFERENCES

1. Liew G, Quin G, Gillies M, Fraser-Bell S. Central serous chorioretinopathy: a review of epidemiology and pathophysiology. Clin Exp Ophthalmol. 2013;41(2):201–214.

2. Wang M, Munch IC, Hasler PW, Prunte C, Larsen M. Central serous chorioretinopathy. Acta Ophthalmol. 2008;86(2):126–145.

3. Garg SP, Dada T, Talwar D, Biswas NR. Endogenous cortisol profile in patients with central serous chorioretinopathy. Br J Ophthalmol. 1997;81(11):962–964.

4. Haimovici R, Koh S, Gagnon DR, Lehrfeld T, Wellik S. Risk factors for central serous chorioretinopathy: a case–control study. Ophthalmology. 2004;111(2):244–249.

5. Liu B, Deng T, Zhang J. Risk factors for central serous chorioretinopathy: a systematic review and meta-analysis. Retina. 2016;36(1):9–19.

6. Aggio FB, Roisman L, Melo GB, Lavinsky D, Cardillo JA, Farah ME. Clinical factors related to visual outcome in central serous chorioretinopathy. Retina. 2010;30(7):1128–1134.

7. Gilbert CM, Owens SL, Smith PD, Fine SL. Long-term follow-up of central serous chorioretinopathy. Br J Ophthalmol. 1984;68(11):815–820.

8. Kitzmann AS, Pulido JS, Diehl NN, Hodge DO, Burke JP. The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980–2002. Ophthalmology. 2008;115(1):169–173.

9. Green RP Jr, Carlson DW, Dieckert JP, Tredici TJ. Central serous chorioretinopathy in U.S. Air Force aviators: a review. Aviat Space Environ Med. 1988;59(12):1170–1175.

10. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254(5035):1178–1181.

11. Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. Ophthalmology. 2014;121(8):1572–1578.

 

Incident cases and incidence and recurrence rates of central serous chorioretinopathy, active component, U.S. Armed Forces, 2001–2018

ICD-9 and ICD-10 diagnostic codes used to identify cases of central serous chorioretinopathy in electronic recods of outpatient encounters

Numbers and rates of incident diagnoses of central serous chorioretinopathy, by demographic characteristics, active component, U.S. Armed Forces, 2001–2018

Numbers and rates of incident diagnoses of central serous chorioretinopathy, by service and military occupation, active component, U.S. Armed Forces, 2001–2018

You also may be interested in...

Sexually Transmitted Infections

Infographic
3/20/2019
Sexually Transmitted Infections

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Vasectomy

Infographic
3/20/2019
Vasectomy

There are few published studies of vasectomy and vasectomy reversal among the U.S. military population. To address these gaps, the current analysis describes the overall and annual incidence rates of vasectomy among active component service men during 2000–2017 by demographic and military characteristics and by type of surgical vas isolation procedure used. In addition, the median age at incident vasectomy and the time between incident vasectomy and first vasectomy reversal are described.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Testosterone Replacement Therapy

Infographic
3/20/2019
Testosterone Replacement Therapy

With the increasing number of testosterone deficiency diagnoses and potential health risks associated with initiation of TRT, it is important to understand the epidemiology of which U.S. service men are receiving TRT and whether these individuals have an indication for receiving treatment.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Male Infertility

Infographic
3/20/2019
Male Infertility

The current report updates and expands on the findings of the previous MSMR analysis of infertility among active component service men. Specifically, the current report summarizes the frequencies, rates, temporal trends, types of infertility, and demographic and military characteristics of infertility among active component service men during 2013–2017.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Adenovirus

Infographic
3/1/2019
Adenovirus

During August–September 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Malaria

Infographic
3/1/2019
Malaria

Since 1999, the Medical Surveillance Monthly Report has published regular updates on the incidence of malaria among U.S. service members. The MSMR’s focus on malaria reflects both historical lessons learned about this mosquito-borne disease and the continuing threat that it poses to military operations and service members’ health.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Glaucoma

Infographic
3/1/2019
Glaucoma

This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Anopheles merus

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Recommended Content:

Medical Surveillance Monthly Report

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During August–September 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 August–11 September 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report
<< < ... 6 7 8 9 10 > >> 
Showing results 76 - 90 Page 6 of 10

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.