Back to Top Skip to main content

Editorial: The Department of Defense/Veterans Affairs Vision Center of Excellence

U.S. Army Spc. Angel Gomez, right, assigned to Charlie Company, 173rd Brigade Support Battalion, wraps the eye of a fellow Soldier with a simulated injury, for a training exercise as part of exercise Saber Junction 16 at the U.S. Army’s Joint Multinational Readiness Center in Hohenfels, Germany, April 5, 2016. Saber Junction is a U.S. Army Europe-led exercise designed to prepare U.S., NATO and international partner forces for unified land operations. The exercise was conducted March 31-April 24. (U.S. Army photo by Pfc. Joshua Morris) U.S. Army Spc. Angel Gomez, right, assigned to Charlie Company, 173rd Brigade Support Battalion, wraps the eye of a fellow Soldier with a simulated injury, for a training exercise as part of exercise Saber Junction 16 at the U.S. Army’s Joint Multinational Readiness Center in Hohenfels, Germany, April 5, 2016. Saber Junction is a U.S. Army Europe-led exercise designed to prepare U.S., NATO and international partner forces for unified land operations. The exercise was conducted March 31-April 24. (U.S. Army photo by Pfc. Joshua Morris)

Recommended Content:

Medical Surveillance Monthly Report

Vision and visual function are essential for performance across multiple activities. When vision is compromised, it can negatively affect behavioral health, social functioning, and overall quality of life.1 Studies have also linked decreased visual function to increased mortality.2 In military populations, optimal visual function is required for demanding tasks ranging from effective weapons utilization3 to aircraft-based flight operations.4

Ocular injuries present a particular problem for service members and the providers charged with their care. These injuries are associated with a substantial cost in terms of resources, rehabilitation, and training.5 In response to the need for increased focus on ocular injuries and their treatment across the continuum of care, the Department of Defense (DoD)/Veterans Affairs (VA) Vision Center of Excellence (VCE) was established by congressional mandate in 2008 under the National Defense Authorization Act (Public Law 110-181, Section 1623) as a center of excellence in the prevention, diagnosis, mitigation, treatment, and rehabilitation of military eye injuries, including visual dysfunction related to traumatic brain injury (TBI).6 Consistent with the requirement of all Defense Centers of Excellence to provide expertise across the entire clinical spectrum of care for a patient, the VCE addresses the full scope of vision care, from the prevention of diseases and treatment of clinical conditions through rehabilitation and transition to civilian life.7

The VCE continually executes initiatives in support of the 2008 mandate. In 2015, the VCE collaborated with the Joint Trauma System (JTS), the Committee on Tactical Combat Casualty Care (TC3), and the Defense Health Agency’s Medical Logistics Division to increase the availability of rigid eye shields in the individual first aid kit. These eye shields are essential for preventing further damage to a traumatized eye until definitive treatment is available. This effort to increase the availability of rigid eye shields resulted in changes to the TC3 card (DD Form 1380) to allow for documentation of eye shield use (check boxes for eye shield use).8 In further collaboration with the JTS, the VCE has initiated and/or contributed to multiple clinical practice guidelines (CPGs) designed to provide best care practices across the spectrum of ocular injuries. For example, the “Ocular Injuries and Vision-Threatening Conditions in Prolonged Field Care” CPG is currently available at https://jts.amedd.army.mil/index.cfm/PI_CPGs/cpgs, and the “Evaluation and Disposition of Temporary Visual Interference and Ocular Injury after Suspected Ocular Laser Exposure” CPG is pending publication on the JTS website.

A specific area of focus mandated to the VCE is visual dysfunction following TBI. To address this complex set of conditions, the VCE, in collaboration with a panel of experts in vision, rehabilitation, and TBI across the DoD, VA, and the civilian sector’s diverse group of subject matter experts, including the Defense and Veterans Brain Injury Center, oversaw the production of clinical recommendations and associated clinical support tools for the care of visual dysfunction after TBI. These aids to clinical care include “Eye and Vision Care Following Blast Exposure and/or Possible Traumatic Brain Injury,” “Care of Visual Field Loss Associated with Traumatic Brain Injury,” and “Care of Oculomotor Dysfunctions Associated with TBI.”9–11 In coordination with the Uniformed Services University of the Health Sciences, the VCE is conducting a review of current visual dysfunction documentation, intervention options, and best practices. The article on visual dysfunction following TBI in this issue of the MSMR was developed to provide additional information on this diverse set of conditions, update current recommendations, and inform future clinical and research efforts.12

The VCE established the World Wide Ocular Trauma and Readiness Curriculum Teleconference to engage international, multiagency, and cross-specialty attendees spanning multiple sites in review of vision cases and identification of clinical process improvements. The monthly calls serve as a key platform for providing feedback and follow-up to deployed providers and for developing and disseminating best practices and clinical lessons learned.

In order to ensure continuity of care from injury through rehabilitation, the VCE developed a collection of reference guides that include vision resources across the DoD and VA as well as at the state and national level. The “Vision Care Coordination Reference Guide” expands network capabilities between stakeholders, increases partnerships, and enables care coordinators to assist in a rapid and thorough response to the patient population requiring trauma and vision care specialties. In addition, the VCE produces fact sheets to educate the care community to assist with engaging a visually impaired patient.

With continued emphasis on military readiness, the VCE is expanding focus beyond combat-related traumatic conditions to include disease and non-battle injuries. Ocular and vision-related conditions can have great impact on readiness and retention. The first article in this issue characterizes the burden of ocular and vision conditions and was developed to provide a broad overview of these conditions.13 This information will provide key information to guide further initiatives and programs across the Military Health System.

The VCE was tasked with implementing and managing a registry of information to track diagnoses, interventions/treatments, and follow-up for each case of significant eye injury sustained by a member of the Armed Forces while serving on active duty. The Defense Vision and Eye Injury and Vision Registry (DVEIVR) was developed to address this requirement. Registry data are available to ophthalmological and optometric personnel of the DoD and VA for purposes of encouraging and facilitating the conduct of research and the development of best practices and clinical education on eye injuries incurred by members of the Armed Forces in combat. Registry data have been used by DoD and academic institutions to better characterize the complex field of ocular trauma. DVEIVR data are also shared with the VA Blind Rehabilitation Service to maximize continuity of care. The VCE is currently incorporating DVEIVR data along with other data sources focused on providing evidence-based care recommendations.

The VCE continually strives to improve the recognition and management of ocular injuries and vision-threatening conditions across military and veteran populations. Such efforts supporting improved care and coordination of care are essential for maintaining the visual performance of U.S. service members and veterans. Additional information on the VCE and its products is available at https://vce.health.mil/. Further inquiries can be sent via email to dha.ncr.dod-va.mbx.vce@mail.mil.

 

REFERENCES

1. Nyman SR, Gosney MA, Victor CR. Psychosocial impact of visual impairment in working-age adults. Br J Ophthalmol. 2010;94(11):1427–1431.

2. Taylor HR, McCarty CA, Nanjan MB. Vision impairment predicts five-year mortality. Trans Am Ophthalmol Soc. 2000;98;91–99.

3. Hatch BC, Hilber DJ, Elledge JB, Stout JW, Lee RB. The effects of visual acuity on target discrimination and shooting performance. Optom Vis Sci. 2009;86(12):e1359–e1367.

4. Tanzer DJ, Brunstetter T, Zeber R, et al. Laser in situ keratomileusis in United States Naval aviators. J Cataract Refract Surg. 2013;39(7):1047–1058.

5. Frick KD, Singman EL. Cost of military eye injury and vision impairment related to traumatic brain injury: 2001–2017. Mil Med. 2019;184(5–6):e338–e343.6. National Defense Authorization Act for Fiscal Year 2008, Public Law 110–181, section 1623. 2008.

7. United States Government Accountability Office. GAO-16-54, Centers of Excellence: DOD and VA Need Better Documentation of Oversight Procedures. https://www.gao.gov/assets/680/673936.pdf. Published 2 December 2015. Accessed 28 August 2019.

8. Defense Health Agency. Procedural Instruction 6040.01. Implementation Guidance for the Utilization of DD Form 1380, Tactical Combat Casualty Care (TCCC) Card, June 2014. 20 January 2017.

9. Department of Defense/Veterans Affairs Vision Center of Excellence. Clinical Recommendations for the Eye Care Provider. Eye and Vision Care Following Blast Exposure and/or Possible Traumatic Brain Injury. https://vce.health.mil/Clinicians-and-Researchers/Clinical-Practice-Recommendations/Eye-Care-and-TBI. Revised 24 November 2015. Accessed 05 August 2019.

10. Department of Defense/Veterans Affairs Vision Center of Excellence. Clinical Recommendation for the Eye Care Provider and Rehabilitation Specialists. Rehabilitation of Patients with Visual Field Loss Associated with Traumatic or Acquired Brain Injury. https://vce.health.mil/Clinicians-and-Researchers/Clinical-Practice-Recommendations/VFL. Revised 27 April 2016. Accessed 05 August 2019.

11. Department of Defense/Veterans Affairs Vision Center of Excellence. Clinical Recommendation for the Eye Care Provider. Assessment and Management of Oculomotor Dysfunctions Associated with Traumatic Brain Injury. https://vce.health.mil/Clinicians-and-Researchers/Clinical-Practice-Recommendations/Oculomotor. Revised 13 December 2016. Accessed 05 August 2019.

12. Reynolds ME, Barker II FM, Merezhinskaya N, Oh G, Stahlman S. Incidence and temporal presentation of visual dysfunction following diagnosis of traumatic brain injury, active component, U.S. Armed Forces, 2006-2017. MSMR. 2019;26(9):13–24.

13. Reynolds ME, Williams VF, Taubman SB, Stahlman S. Absolute and relative morbidity burdens attributable to ocular and vision-related conditions, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(9): 4–11.

You also may be interested in...

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, Civilian Applicants for U.S. Military Service and U.S. Armed Forces, Active and Reserve Components, January 2014–June 2019

Article
8/1/2019
A hospitalman draws blood at Naval Medical Center Portsmouth’s Laboratory Department. DoD Photo

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Incidence of Rickettsial Diseases Among Active and Reserve Component Service Members, U.S. Armed Forces, 2010–2018

Article
8/1/2019
Dorsal view of a female American dog tick, Dermacentor variabilis. Credit: CDC/Gary O. Maupin

Recommended Content:

Medical Surveillance Monthly Report

Historical Review: Rickettsial Diseases and Their Impact on U.S. Military Forces

Article
8/1/2019
Dorsal view of a female American dog tick, Dermacentor variabilis. Credit: CDC/Gary O. Maupin

Recommended Content:

Medical Surveillance Monthly Report

Mononucleosis

Infographic
7/1/2019
Mononucleosis

A specimen is tested for mononucleosis at the medical clinic on Ellsworth Air Force Base, South Dakota (U.S. Air Force photo)

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Influenza

Infographic
7/1/2019
Adminstration of a seasonal flu vaccination. (U.S. Navy photo)

Adminstration of a seasonal flu vaccination. (U.S. Navy photo)

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Zika

Infographic
7/1/2019
Zika

Anopheles merus mosquito. (CDC photo by James Gathany)

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Psittacosis

Infographic
7/1/2019
Psittacosis

Green-winged Macaw. (U.S. Air Force photo)

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Case Report: Possible Psittacosis in a Military Family Member—Clinical and Public Health Management Issues in Military Settings

Article
7/1/2019
Green-winged Macaw

Recommended Content:

Medical Surveillance Monthly Report

Zika Virus Surveillance in Active Duty U.S. Military and Dependents Through the Naval Infectious Diseases Diagnostic Laboratory

Article
7/1/2019
Anopheles merus mosquito. (CDC photo by James Gathany)

Recommended Content:

Medical Surveillance Monthly Report

Infectious Mononucleosis, Active Component, U.S. Armed Forces, 2002–2018

Article
7/1/2019
A specimen is tested for mononucleosis at the medical clinic on Ellsworth Air Force Base, South Dakota (U.S. Air Force photo)

Recommended Content:

Medical Surveillance Monthly Report

Serological Evidence of Burkholderia pseudomallei Infection in U.S. Marines Who Trained in Australia From 2012–2014: A Retrospective Analysis of Archived Samples

Article
7/1/2019
Burkholderia pseudomallei grown on sheep blood agar for 96 hours. (CDC photo by Larry Stauffer)

As in prior years, mental health disorders, pregnancy-related conditions, and injury/poisoning accounted for the majority (59.8%) of all hospitalizations among active component service members in 2018. However, the hospitalization rate for all causes was the lowest rate in the past 10 years.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Department of Defense Midseason Estimates of Vaccine Effectiveness for the 2018–2019 Influenza Season

Article
7/1/2019
Adminstration of a seasonal flu vaccination. (U.S. Navy photo)

Recommended Content:

Medical Surveillance Monthly Report

Cyclosporiasis

Infographic
6/1/2019
Cyclosporiasis

Outbreak of Cyclosporiasis in a U.S. Air Force Training Population, Joint Base San Antonio–Lackland, TX, 2018 While bacteria and viruses are the usual causes of gastrointestinal disease outbreaks, 2 Joint Base San Antonio (JBSA)– Lackland, TX, training populations experienced an outbreak of diarrheal illness caused by the parasite Cyclospora cayetanensis in June and July 2018. Cases were identified from outpatient medical records and responses to patient questionnaires.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Norovirus

Infographic
6/1/2019
Norovirus

Norovirus Outbreak in Army Service Members, Camp Arifjan, Kuwait, May 2018 In May 2018, an outbreak of gastrointestinal illnesses due to norovirus occurred at Camp Arifjan, Kuwait. The outbreak lasted 14 days, and a total of 91 cases, of which 8 were laboratory confirmed and 83 were suspected, were identified.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Female infertility

Infographic
6/1/2019
Female infertility

Female infertility, active component service women, U.S. Armed Forces, 2013–2018 This report presents the incidence and prevalence of diagnosed female infertility among active component service women. During 2013–2018, 8,744 active component women of childbearing potential were diagnosed with infertility for the first time, resulting in an overall incidence of 79.3 cases per 10,000 person-years (p-yrs).

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health
<< < 1 2 3 4 5  ... > >> 
Showing results 16 - 30 Page 2 of 9

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing: Download a PDF Reader or learn more about PDFs.