Back to Top Skip to main content

Editorial: The Department of Defense/Veterans Affairs Vision Center of Excellence

U.S. Army Spc. Angel Gomez, right, assigned to Charlie Company, 173rd Brigade Support Battalion, wraps the eye of a fellow Soldier with a simulated injury, for a training exercise as part of exercise Saber Junction 16 at the U.S. Army’s Joint Multinational Readiness Center in Hohenfels, Germany, April 5, 2016. Saber Junction is a U.S. Army Europe-led exercise designed to prepare U.S., NATO and international partner forces for unified land operations. The exercise was conducted March 31-April 24. (U.S. Army photo by Pfc. Joshua Morris) U.S. Army Spc. Angel Gomez, right, assigned to Charlie Company, 173rd Brigade Support Battalion, wraps the eye of a fellow Soldier with a simulated injury, for a training exercise as part of exercise Saber Junction 16 at the U.S. Army’s Joint Multinational Readiness Center in Hohenfels, Germany, April 5, 2016. Saber Junction is a U.S. Army Europe-led exercise designed to prepare U.S., NATO and international partner forces for unified land operations. The exercise was conducted March 31-April 24. (U.S. Army photo by Pfc. Joshua Morris)

Recommended Content:

Medical Surveillance Monthly Report

Vision and visual function are essential for performance across multiple activities. When vision is compromised, it can negatively affect behavioral health, social functioning, and overall quality of life.1 Studies have also linked decreased visual function to increased mortality.2 In military populations, optimal visual function is required for demanding tasks ranging from effective weapons utilization3 to aircraft-based flight operations.4

Ocular injuries present a particular problem for service members and the providers charged with their care. These injuries are associated with a substantial cost in terms of resources, rehabilitation, and training.5 In response to the need for increased focus on ocular injuries and their treatment across the continuum of care, the Department of Defense (DoD)/Veterans Affairs (VA) Vision Center of Excellence (VCE) was established by congressional mandate in 2008 under the National Defense Authorization Act (Public Law 110-181, Section 1623) as a center of excellence in the prevention, diagnosis, mitigation, treatment, and rehabilitation of military eye injuries, including visual dysfunction related to traumatic brain injury (TBI).6 Consistent with the requirement of all Defense Centers of Excellence to provide expertise across the entire clinical spectrum of care for a patient, the VCE addresses the full scope of vision care, from the prevention of diseases and treatment of clinical conditions through rehabilitation and transition to civilian life.7

The VCE continually executes initiatives in support of the 2008 mandate. In 2015, the VCE collaborated with the Joint Trauma System (JTS), the Committee on Tactical Combat Casualty Care (TC3), and the Defense Health Agency’s Medical Logistics Division to increase the availability of rigid eye shields in the individual first aid kit. These eye shields are essential for preventing further damage to a traumatized eye until definitive treatment is available. This effort to increase the availability of rigid eye shields resulted in changes to the TC3 card (DD Form 1380) to allow for documentation of eye shield use (check boxes for eye shield use).8 In further collaboration with the JTS, the VCE has initiated and/or contributed to multiple clinical practice guidelines (CPGs) designed to provide best care practices across the spectrum of ocular injuries. For example, the “Ocular Injuries and Vision-Threatening Conditions in Prolonged Field Care” CPG is currently available at https://jts.amedd.army.mil/index.cfm/PI_CPGs/cpgs, and the “Evaluation and Disposition of Temporary Visual Interference and Ocular Injury after Suspected Ocular Laser Exposure” CPG is pending publication on the JTS website.

A specific area of focus mandated to the VCE is visual dysfunction following TBI. To address this complex set of conditions, the VCE, in collaboration with a panel of experts in vision, rehabilitation, and TBI across the DoD, VA, and the civilian sector’s diverse group of subject matter experts, including the Defense and Veterans Brain Injury Center, oversaw the production of clinical recommendations and associated clinical support tools for the care of visual dysfunction after TBI. These aids to clinical care include “Eye and Vision Care Following Blast Exposure and/or Possible Traumatic Brain Injury,” “Care of Visual Field Loss Associated with Traumatic Brain Injury,” and “Care of Oculomotor Dysfunctions Associated with TBI.”9–11 In coordination with the Uniformed Services University of the Health Sciences, the VCE is conducting a review of current visual dysfunction documentation, intervention options, and best practices. The article on visual dysfunction following TBI in this issue of the MSMR was developed to provide additional information on this diverse set of conditions, update current recommendations, and inform future clinical and research efforts.12

The VCE established the World Wide Ocular Trauma and Readiness Curriculum Teleconference to engage international, multiagency, and cross-specialty attendees spanning multiple sites in review of vision cases and identification of clinical process improvements. The monthly calls serve as a key platform for providing feedback and follow-up to deployed providers and for developing and disseminating best practices and clinical lessons learned.

In order to ensure continuity of care from injury through rehabilitation, the VCE developed a collection of reference guides that include vision resources across the DoD and VA as well as at the state and national level. The “Vision Care Coordination Reference Guide” expands network capabilities between stakeholders, increases partnerships, and enables care coordinators to assist in a rapid and thorough response to the patient population requiring trauma and vision care specialties. In addition, the VCE produces fact sheets to educate the care community to assist with engaging a visually impaired patient.

With continued emphasis on military readiness, the VCE is expanding focus beyond combat-related traumatic conditions to include disease and non-battle injuries. Ocular and vision-related conditions can have great impact on readiness and retention. The first article in this issue characterizes the burden of ocular and vision conditions and was developed to provide a broad overview of these conditions.13 This information will provide key information to guide further initiatives and programs across the Military Health System.

The VCE was tasked with implementing and managing a registry of information to track diagnoses, interventions/treatments, and follow-up for each case of significant eye injury sustained by a member of the Armed Forces while serving on active duty. The Defense Vision and Eye Injury and Vision Registry (DVEIVR) was developed to address this requirement. Registry data are available to ophthalmological and optometric personnel of the DoD and VA for purposes of encouraging and facilitating the conduct of research and the development of best practices and clinical education on eye injuries incurred by members of the Armed Forces in combat. Registry data have been used by DoD and academic institutions to better characterize the complex field of ocular trauma. DVEIVR data are also shared with the VA Blind Rehabilitation Service to maximize continuity of care. The VCE is currently incorporating DVEIVR data along with other data sources focused on providing evidence-based care recommendations.

The VCE continually strives to improve the recognition and management of ocular injuries and vision-threatening conditions across military and veteran populations. Such efforts supporting improved care and coordination of care are essential for maintaining the visual performance of U.S. service members and veterans. Additional information on the VCE and its products is available at https://vce.health.mil/. Further inquiries can be sent via email to dha.ncr.dod-va.mbx.vce@mail.mil.

 

REFERENCES

1. Nyman SR, Gosney MA, Victor CR. Psychosocial impact of visual impairment in working-age adults. Br J Ophthalmol. 2010;94(11):1427–1431.

2. Taylor HR, McCarty CA, Nanjan MB. Vision impairment predicts five-year mortality. Trans Am Ophthalmol Soc. 2000;98;91–99.

3. Hatch BC, Hilber DJ, Elledge JB, Stout JW, Lee RB. The effects of visual acuity on target discrimination and shooting performance. Optom Vis Sci. 2009;86(12):e1359–e1367.

4. Tanzer DJ, Brunstetter T, Zeber R, et al. Laser in situ keratomileusis in United States Naval aviators. J Cataract Refract Surg. 2013;39(7):1047–1058.

5. Frick KD, Singman EL. Cost of military eye injury and vision impairment related to traumatic brain injury: 2001–2017. Mil Med. 2019;184(5–6):e338–e343.6. National Defense Authorization Act for Fiscal Year 2008, Public Law 110–181, section 1623. 2008.

7. United States Government Accountability Office. GAO-16-54, Centers of Excellence: DOD and VA Need Better Documentation of Oversight Procedures. https://www.gao.gov/assets/680/673936.pdf. Published 2 December 2015. Accessed 28 August 2019.

8. Defense Health Agency. Procedural Instruction 6040.01. Implementation Guidance for the Utilization of DD Form 1380, Tactical Combat Casualty Care (TCCC) Card, June 2014. 20 January 2017.

9. Department of Defense/Veterans Affairs Vision Center of Excellence. Clinical Recommendations for the Eye Care Provider. Eye and Vision Care Following Blast Exposure and/or Possible Traumatic Brain Injury. https://vce.health.mil/Clinicians-and-Researchers/Clinical-Practice-Recommendations/Eye-Care-and-TBI. Revised 24 November 2015. Accessed 05 August 2019.

10. Department of Defense/Veterans Affairs Vision Center of Excellence. Clinical Recommendation for the Eye Care Provider and Rehabilitation Specialists. Rehabilitation of Patients with Visual Field Loss Associated with Traumatic or Acquired Brain Injury. https://vce.health.mil/Clinicians-and-Researchers/Clinical-Practice-Recommendations/VFL. Revised 27 April 2016. Accessed 05 August 2019.

11. Department of Defense/Veterans Affairs Vision Center of Excellence. Clinical Recommendation for the Eye Care Provider. Assessment and Management of Oculomotor Dysfunctions Associated with Traumatic Brain Injury. https://vce.health.mil/Clinicians-and-Researchers/Clinical-Practice-Recommendations/Oculomotor. Revised 13 December 2016. Accessed 05 August 2019.

12. Reynolds ME, Barker II FM, Merezhinskaya N, Oh G, Stahlman S. Incidence and temporal presentation of visual dysfunction following diagnosis of traumatic brain injury, active component, U.S. Armed Forces, 2006-2017. MSMR. 2019;26(9):13–24.

13. Reynolds ME, Williams VF, Taubman SB, Stahlman S. Absolute and relative morbidity burdens attributable to ocular and vision-related conditions, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(9): 4–11.

You also may be interested in...

Female infertility

Infographic
6/1/2019
Female infertility

Female infertility, active component service women, U.S. Armed Forces, 2013–2018 This report presents the incidence and prevalence of diagnosed female infertility among active component service women. During 2013–2018, 8,744 active component women of childbearing potential were diagnosed with infertility for the first time, resulting in an overall incidence of 79.3 cases per 10,000 person-years (p-yrs).

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Hospitalizations, active component, U.S. Armed Forces, 2018

Article
5/1/2019
U.S. Navy sailors graduate from boot camp at Recruit Training Command (RTC) in 2018. (Photo courtesy of U.S. Navy)

As in prior years, mental health disorders, pregnancy-related conditions, and injury/poisoning accounted for the majority (59.8%) of all hospitalizations among active component service members in 2018. However, the hospitalization rate for all causes was the lowest rate in the past 10 years.

Recommended Content:

Medical Surveillance Monthly Report

Morbidity burdens attributable to various illnesses and injuries, deployed active and reserve component service members, U.S. Armed Forces, 2018

Article
5/1/2019
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

Among service members deployed during 2018, injury/poisoning, musculoskeletal diseases, and signs/symptoms accounted for more than half of the total healthcare burden while deployed. Compared to the distribution of major burden of disease categories documented in garrison, a relatively greater proportion of in-theater medical encounters due to respiratory infections, skin diseases, infectious/parasitic diseases, and digestive diseases was documented.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and relative morbidity burdens attributable to various illnesses and injuries, non-service member beneficiaries of the Military Health System, 2018

Article
5/1/2019
A senior airman of 366th Medical Support Squadron pediatric clinic checks vitals of the child of its service member at Mountain Home Air Force Base in Idaho. (Photo courtesy of U.S. Air Force)

In 2018, mental health disorders accounted for the largest proportions of the morbidity and healthcare burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 years, musculoskeletal diseases accounted for the most morbidity and healthcare burdens, and among adults aged 65 years or older, cardiovascular diseases accounted for the most.

Recommended Content:

Medical Surveillance Monthly Report

Medical evacuations out of the U.S. Central Command, active and reserve components, U.S. Armed Forces, 2018

Article
5/1/2019
Airmen from the 19th Medical Group litter-carry a simulated patient onto a C-130J during an aeromedical evacuation training mission at Little Rock Air Force Base in 2019. (Photo Courtesy of U.S. Air Force)

The number of medical evacuations for battle injuries has decreased considerably since 2014. Most medical evacuations in 2018 were attributed to mental health disorders, followed by non-battle injury/poisoning; signs, symptoms, and ill-defined conditions; musculoskeletal disorders; and digestive system disorders.

Recommended Content:

Medical Surveillance Monthly Report

Ambulatory visits, active component, U.S. Armed Forces, 2018

Article
5/1/2019
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

Musculoskeletal disorders and mental health disorders accounted for more than half (52.6%) of all illness- and injury-related ambulatory encounters among active component service members in 2018. Since 2014, the number of ambulatory visits for mental health disorders has decreased, while the numbers of ambulatory visits for musculoskeletal system/connective tissue disorders, nervous system and sense organ disorders, and respiratory system disorders have increased.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Illness and Injury Burdens, Reserve Component, U.S. Armed Forces, 2018

Article
5/1/2019
U.S. Navy sailors graduate from boot camp at Recruit Training Command (RTC) in 2018. (Photo courtesy of U.S. Navy)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Illness and Injury Burdens, Recruit Trainees, Active Component, U.S. Armed Forces, 2018

Article
5/1/2019
U.S. Navy sailors graduate from boot camp at Recruit Training Command (RTC) in 2018. (Photo courtesy of U.S. Navy)

Recommended Content:

Medical Surveillance Monthly Report

Ambulatory Visits, Active Component, U.S. Armed Forces, 2018

Infographic
5/1/2019
Ambulatory Visits

Ambulatory Visits, Active Component, U.S. Armed Forces, 2018 This report documents the frequencies, rates, trends, and characteristics of ambulatory healthcare visits of active component members of the U.S. Army, Navy, Air Force, and Marine Corps during 2018.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Absolute and Relative Morbidity Burdens

Infographic
5/1/2019
Absolute and relative morbidity burdens

Absolute and Relative Morbidity Burdens Attributable To Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2018 This annual summary uses a standard disease classification system (modified for use among U.S. military members) and several healthcare burden measures to quantify the impacts of various illnesses and injuries among members of the active component of the U.S. Armed Forces in 2018.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-Service Member Beneficiaries of the Military Health System, 2018

Infographic
5/1/2019
Morbidity Burdens

The current report represents an update and provides a summary of care provided to non-service members in the MHS during calendar year 2018. Healthcare burden estimates are stratified by direct versus outsourced care and across 4 age groups of healthcare recipients.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Hospitalizations, Active Component, U.S. Armed Forces, 2018

Infographic
5/1/2019
Hospitalizations

Hospitalizations, Active Component, U.S. Armed Forces, 2018 This report documents the frequencies, rates, trends, and distributions of hospitalizations of active component members of the U.S. Army, Navy, Air Force, and Marine Corps during calendar year 2018.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2018

Article
5/1/2019
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

In 2018, mental health disorders accounted for the largest proportions of the morbidity and healthcare burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 years, musculoskeletal diseases accounted for the most morbidity and healthcare burdens, and among adults aged 65 years or older, cardiovascular diseases accounted for the most.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

Article
4/1/2019
U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine Corps and Army members, and those in combat-specific or “other/unknown” occupations. During 2014–2018, crude rates of exertional rhabdomyolysis increased steadily from 2014 through 2016 after which rates declined slightly in 2017 before increasing again in 2018. Compared to service members in other race/ethnicity groups, the overall rate of exertional rhabdomyolysis was highest among non-Hispanic blacks in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Incidence, Timing, and Seasonal Patterns of Heat Illnesses During U.S. Army Basic Combat Training, 2014–2018

Article
4/1/2019
U.S. Marines participate in morning physical training during a field exercise at Marine Corps Base Camp Pendleton, California. (Photo Courtesy: U.S. Marine Corps)

Risk factors for heat illnesses (HIs) among new soldiers include exercise intensity, environmental conditions at the time of exercise, a high body mass index, and conducting initial entry training during hot and humid weather when recruits are not yet acclimated to physical exertion in heat. This study used data from the Defense Health Agency’s–Weather-Related Injury Repository to calculate rates and to describe the incidence, timing, and geographic distribution of HIs among soldiers during U.S. Army basic combat training (BCT). From 2014 through 2018, HI events occurred in 1,210 trainees during BCT, resulting in an overall rate of 3.6 per 10,000 BCT person-weeks (p-wks) (95% CI: 3.4–3.8). HI rates (cases per 10,000 BCT p-wks) varied among the 4 Army BCT sites: Fort Benning, GA (6.8); Fort Jackson, SC (4.4); Fort Sill, OK (1.8); and Fort Leonard Wood, MO (1.7). Although the highest rates ofHIs occurred at Fort Benning, recruits in all geographic areas were at risk. The highest rates of HI occurred during the peak training months of June through September, and over half of all HI cases affected soldiers during the first 3 weeks of BCT. Prevention of HI among BCT soldiers requires relevant training of both recruits and cadre as well as the implementation of effective preventive measures.

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 31 - 45 Page 3 of 8

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.