Back to Top Skip to main content

Unleashing innovation to support field medics, corpsmen

A drone lifts off during the Hive Final Mile demonstration on Marine Corps Base Quantico, Virginia. Drones are one of the autonomous technologies that might soon be helping medics provide care for warfighters on distant battlefields. (U.S. Marine Corps photo by Sgt. Jacqueline A. Clifford) A drone lifts off during the Hive Final Mile demonstration on Marine Corps Base Quantico, Virginia. Drones are one of the autonomous technologies that might soon be helping medics provide care for warfighters on distant battlefields. (U.S. Marine Corps photo by Sgt. Jacqueline A. Clifford)

Recommended Content:

Research and Innovation | Innovation

Imagine unmanned vehicles bringing medical supplies or blood products to support a field medic’s care of wounded soldiers, or even transporting a wounded warfighter to safety. Researchers at the Army’s Telemedicine and Advanced Technology Research Center, or TATRC, are collaborating with the services, academia, and private industry to make such scenarios a reality.

“Our Medical Robotics and Autonomous Systems or MED-RAS research projects are focused on extending up-and-coming robotics and autonomy technologies to military medicine,” said Dr. Gary Gilbert of the Army Futures Command Medical Research and Development Command, Telemedicine and Advanced Technology Research Center at Fort Detrick, Maryland. Gilbert and his team have four research objectives to mirror themes identified by the Department of Defense “Unmanned Systems Integrated Roadmap 2017-2042”: interoperability, autonomy, network security, and human-machine collaboration.

Last year, the Armed Services Biomedical Research Evaluation and Management Community of Interest, which includes members from across the Department of Defense, met to discuss how autonomous evacuation and care could support military medical services in the field. Their report described the need for a cross-services effort to build strategic partnerships within DoD that make implementation possible.

The MED-RAS research projects build upon technological advancements that will enhance the expertise and skills of medics and corpsmen on the battlefield through the use of artificial intelligence-based tools, such as mobile devices or drones that can deliver needed technology. Gilbert explained that such assistance will serve multiple purposes. It will provide support to make informed treatment decisions, perform artificial intelligence-based patient monitoring and diagnosis, and automatically record the patient’s data.

The TATRC team is also researching how to support wounded service members for long periods of time using robotic devices that automatically medicate patients and assist with breathing or replacing fluids, according to Rebecca Lee, a TATRC biomedical engineer. Such advances, combined with drone delivery of medical supplies or blood products, could be force multipliers for field medics or corpsmen who can’t evacuate casualties quickly due to inaccessible terrain or enemy threats.

The third research effort, according to Nathan Fisher, a robotics and mechanical engineer and another member of the TATRC team, focuses on developing medical technologies that are less or not at all reliant on a medic’s assistance, such as diagnosing a patient, taking X-ray images, and evacuating casualties without a human being present. Future breakthroughs in robotic technology could also enable remote surgery capabilities in forward environments, Fisher explained.

Before robotic care and unmanned casualty evacuation can occur, a more rugged, military-grade generation of computerized medical equipment must be developed. “We are meeting this need with the Automated Critical Care System, or ACCS, essentially an intensive care unit for the field,” said Dr. Timothy Bentley of the Office of Naval Research, or ONR. The ACCS rides under the casualty’s litter providing continuous monitoring and therapeutic care during prolonged evacuations. Medical data are sent to distant physicians; medical guidance is sent back to the ACCS.

“Working with Dr. Gilbert and his colleagues at TATRC, we will be able to integrate the ACCS into future UAVs,” said Bentley.

To address Marine Corps interest in enhancing ground evacuation, ONR is working with Australian researchers and the Australian Defence Force. The U.S. Marine Corps and Australian Defence Force are similar in size and share many mutual casualty-care challenges: long distances, limited personnel, and multi-purpose vehicles and helicopters. Additionally, the Australian research team brings technical, medical, and military expertise, as well as past collaboration with ONR to address specific military casualty care evacuation challenges. The ACCS will ride on a self-driving vehicle built to reduce jolts during travel over rough terrain. Medical data, presented on a heads-up display, will allow a medic or corpsman to monitor, provide care, and transport one or more casualties during stabilization and evacuation.

Such new systems are not challenge-free. “Autonomous care systems are innovative and while they reduce some risks, they introduce others that must be managed,” said Army Lt. Col. Eric Midboe, director of Research and Technology at the Research and Development Directorate of the Defense Health Agency. Adoption will mean that technology, logistics, and medical care have been integrated, which in turn “will require extensive education for everyone involved, from senior leaders to corpsmen and medics, as to how such a new system of patient care delivery might work,” Midboe added.

Douglas E. Moore, a retired Army colonel and helicopter pilot who flew medevac missions in Vietnam, confirmed the complexity of autonomous care scenarios in recent times as opposed to historic warfare. “You knew where the enemy was and there was a defined locus of control in terms of front lines that was assumed by both sides. In Iraq and Afghanistan, and most likely in future battles, there’s no ownership, no front line. You may control a small space in a neighborhood, but the enemy surrounds you, so how do you get aircraft in and out?”

Autonomous medical care is beginning to move into the mainstream. In Africa, medical centers are being resupplied by UAVs. In the United States, a drone delivered a kidney for transplantation from one Baltimore, Maryland, hospital to another across the city.

“Development of semi-autonomous to fully autonomous medical care and transport systems will be a tremendous force multiplier,” said Midboe. “With the right leadership and financial support, we’ll be able to collaborate across the services and engage with industry to capitalize on the newest technology and execute our autonomous care and evacuation capability goals.”

You also may be interested in...

DHA-PI 3200.01: Research and Development (R&D) Enterprise Activity (EA)

Policy

This Defense Health Agency-Procedural Instruction (DHA-PI), based on the authority of References (a) and (b), and in accordance with the guidance of References (c) through (p): a. Establishes the Defense Health Agency’s (DHA) procedures for the Deputy Assistant Director (DAD), R&D to manage and execute, on behalf of the Assistant Secretary of Defense for Health Affairs (ASD(HA)), the portion of the Defense Health Program (DHP) Research, Development, Test, and Evaluation (RDT&E) appropriation assigned to it (referred to as the “DHP Science and Technology (S&T) Program)”. The DHP S&T Program includes Budget Activities (BAs) 6.1-6.3 and 6.6. The ASD(HA) provides policy, direction, and guidance to inform planning, programming, budgeting, and execution of the DHP RDT&E appropriation in accordance with statute, regulation, and policy in Reference (a). The DAD-R&D, and Component Acquisition Executive (CAE) manage and execute DHP RDT&E Program funds aligned to them on behalf of the ASD(HA). The CAE is responsible for managing BAs 6.4, 6.5, and 6.7 funding, as well as Procurement and Operations and Maintenance funding required to support DHP-funded Acquisition Programs, regardless of acquisition activity. b. Supports the Director, DHA, in developing appropriate DHA management models to maximize efficiencies in the management and execution of DHP RDT&E-funded activities carried out by the Combatant Commands (CCMDs), Services, Uniformed Services University of the Health Sciences (USU), Defense Agencies, and other DoD Components, as applicable. c. Codifies processes to confirm DHP RDT&E funds are applied towards medical priorities and aligned to ASD(HA) policy, direction, and guidance to develop and deliver innovative medical products and solutions that increase the readiness of the DoD medical mission in accordance with Reference (a). d. Supports the following objectives of the R&D EA: (1) Increasing the quantity, quality, and pace of medical research through improved programmatic organization, processes, and oversight. (2) Ensuring DHP RDT&E funded efforts align to ASD(HA) published program guidance that provides resourcing guidance and translates national, departmental, and Service priorities into specific program objectives. (3) Verifying alignment of DHP RDT&E funds to medical priorities and to ASD(HA) policy, direction, and guidance to ensure the development and delivery of medical materiel and knowledge solutions. (4) Facilitating coordination with the CCMDs, Services, USU, Defense Agencies, and other DoD Components, as applicable, to ensure DHP RDT&E funded activities address joint medical capability gaps, and avoid unnecessary duplication.

Waiver of Restrictive Licensure and Privileging Procedures to Facilitate the Expansion of Telemedicine Services in the Military Health System 12-010

Policy

In order to facilitate the expansion of telemedicine services in the Military Health System, this memorandum waives selective provisions of Department of Defense 602S.13-R, "Clinical Quality Assurance in the Military Health System," June 11 , 2004. This waiver is conditioned on the specific provisions of this memorandum, and shall remain in effect, unless modified or revoked, until the cancellation and reissuance of DoD 602S.13-R, or the issuance of a Department of Defense Instruction for or including telemedicine.

Guidance on the Establishment of a Human Cell, Tissue, and Cellular and Tissue Based Products Program

Policy

This memorandum requests the Services resource a Human Cell, Tissue, and Cellular and Tissue Based Products (HCT/Ps) Program that complies with regulatory standards for management and oversight of HCT/Ps, according to the best fit for their Service.

Planning for the Reform of the Governance of the Military Health System

Policy
  • Identification #: N/A
  • Date: 3/2/2012
  • Type: Guidelines
  • Topics: Innovation
<< < 1 > >> 
Showing results 1 - 4 Page 1 of 1

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.