Back to Top Skip to main content

Prevalence of Glucose-6-Phosphate Dehydrogenase Deficiency, U.S. Armed Forces, May 2004–September 2018

Staff Sgt. Cory Gage, 23d Medical Support Squadron medical laboratory technician, places a blood specimen in an automated hematology analyzer, Aug. 29, 2017, at Moody Air Force Base, Ga. Moody’s lab technicians process blood to check for a variety of cell abnormalities from infections to cancer. (U.S. Air Force photo by Airman 1st Class Erick Requadt) Staff Sgt. Cory Gage, 23d Medical Support Squadron medical laboratory technician, places a blood specimen in an automated hematology analyzer, Aug. 29, 2017, at Moody Air Force Base, Ga. Moody’s lab technicians process blood to check for a variety of cell abnormalities from infections to cancer. (U.S. Air Force photo by Airman 1st Class Erick Requadt)

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an inherited genetic disorder most commonly associated with hemolytic anemia. Among those with G6PD deficiency, hemolytic anemia may be triggered by bacterial or viral infections and by certain foods and drugs, including the 8-aminoquinoline (8-AQ) class of antimalarials. Because 8-AQ drugs remain the only drugs approved by the U.S. Food and Drug Administration for malaria relapse prevention, the Department of Defense (DoD) requires testing of all service members’ G6PD status. To estimate prevalence of G6PD deficiency among DoD service members, Composite Health Care System-generated, Health Level 7-formatted laboratory records for all service members (n=2,311,223) dated between May 2004 and September 2018 were queried for G6PD testing. Corresponding demographic data were obtained from the Defense Enrollment Eligibility Reporting System. Overall prevalence of G6PD deficiency among this cohort was low, at 2.2%. Demographic trends mirrored U.S. statistics; the cohort prevalence among males (2.3%) was higher than among females (1.5%), and the prevalence among non-Hispanic blacks (9.5%) was higher than among those in any other race/ethnicity group.

WHAT ARE THE NEW FINDINGS?    

Test results for 2,311,223 active duty service members over a 14-year period confirmed previous service-specific surveillance reports about the prevalence of G6PD deficiency. The deficiency was found in 2.2% of all service members, and the prevalence ranged from 11.2% among non-Hispanic black males to 0.3% among non-Hispanic white females. To the authors’ knowledge, this is the first DoD report widely addressing the prevalence of G6PD deficiency among active duty service members.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Service members who travel or deploy to malaria-endemic regions are at risk of malaria infection. Because of the risk of hemolytic anemia from use of the 8-AQ class of antimalarial drugs (e.g., primaquine, tafenoquine), military leaders should be aware of G6PD deficiency diagnoses among service members under their purview and should continue adherence to current DoD G6PD screening policies.

BACKGROUND

Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme for the pentose phosphate pathway in the erythrocyte because it converts glucose-6-phosphate to 6-phosphoglucono-d-lactone. G6PD also converts nicotinamide adenine dinucleotide phosphate (NADP) to the reduced form of NADP (NADPH), a critical redox-active cofactor that mitigates oxidative damage to the erythrocytes.G6PD deficiency is a genetic condition arising from mutations on the Gd gene on the X chromosome that encodes G6PD enzyme. As an X-linked recessive genetic disorder, G6PD deficiency has a higher prevalence in males than females.1 Reduced G6PD activity in G6PD deficient individuals can cause hemolysis with different manifestations (e.g., kernicterus in infants and hemolytic crises) from exposures to oxidative stressors including certain medications, fava beans, and infections.1,2 For example, members of the 8-aminoquinoline (8-AQ) class of antimalarial drugs can cause hemolysis in the G6PD deficient population. 

8-AQ class antimalarial drugs (primaquine and the newly Food and Drug Administration (FDA)-approved tafenoquine for weekly chemoprophylaxis and single-dose radical cure) are important because they target hypnozoites—a dormant form of the malaria parasite common in Plasmodium vivax and P. ovale infections that can emerge from the liver and cause relapse days to years after treatment has cleared the malaria parasites from the circulating red blood cells. Although these infections are less often fatal than P. falciparum infections, they still can cause significant morbidity because of relapse from the dormant form of the parasites. Because the 8-AQ class drugs are the only FDA-approved drugs for malaria relapse prevention, the Department of Defense (DoD) mandated G6PD testing of service members at the time of military accession as early as 1981 (Instruction 6465.13,4 updated with DoD Instruction 6465.015 in 2015 and 6025.146 in 2018), and the Army implemented additional G6PD screening of soldiers deploying to malaria endemic regions as early as 2004.7 However, given that this drug class may trigger hemolytic anemia among those who are G6PD deficient, it is important to adhere to DoD G6PD screening instructions and provide results to command leaders and tested individuals for situational awareness and force protection.

Thus, the objectives of this surveillance report are to describe the prevalence of G6PD deficiency among active duty DoD service members who were screened during 2004–2018 and remind the DoD medical community to consider the risk of hemolytic anemia when prescribing the use of the 8-AQ class of antimalarial drugs.

METHODS

This cross-sectional study used Composite Health Care System-generated, Health Level 7-formatted chemistry laboratory records from 01 May 2004 through 30 September 2018 and queried for G6PD laboratory test results among all active duty, recruit, and active reserve DoD service members tested at fixed military treatment facilities (MTFs). Generally, G6PD testing occurs during accession (recruit training), which is reflected in over 90% of these records.

Key terms used to identify G6PD assays were “G6” or “glucose 6” in the test ordered or test name fields. G6PD tests are often run in panels with other genetic and hemoglobin tests. Records were excluded from the analysis if the test name field contained text indicating other genetic testing (e.g., “sickle cell anemia”), “red blood count,” “hemoglobin testing,” “miscellaneous,” or if the test type could not be determined.

G6PD laboratory test result fields were alpha character–based or numeric. Character-based records with a test result of “Not Deficient,” “High,” or “Normal” were classified as “Not Deficient.” Records with a test result of “Deficient” or “Low” were classified as “Deficient.” Because of laboratory testing variations between MTFs, numeric test results were classified based upon the reference ranges indicated in the record. If a record had no reference range but units of measure were noted, the reference range was inferred based on other tests with the same unit of measure. In an effort to provide an accurate denominator, if the test result was numeric and the units of measure and the reference ranges could not be extrapolated from the data, the record result was classified as “Unknown.” To avoid misclassification of results, if the test result field referred to the free-text result notes field, the record was classified as “Unknown.”

If a service member had more than 1 record and the test results differed, the records were prioritized as follows: a “Deficient” record was retained over a “Not Deficient” or “Unknown” record, and a “Not Deficient” record was retained over an “Unknown” record. Only 1 record per service member was retained for analysis.

Final records were matched to the most recent Defense Enrollment Eligibility Reporting System (DEERS) record for each service member to obtain race/ethnicity and service affiliation. Records were not included in the final dataset if there were no matching DEERS records (n=29,642). Demographic frequencies and distributions for the final cohort were calculated using SAS software, version 9.4 (SAS Institute, Cary, NC).

RESULTS

Overall results are presented in Table 1. G6PD laboratory test results for 2,311,223 service members were evaluated. Examination of laboratory records indicated that the vast majority (97.7%) of service members tested were not G6PD deficient. Only 0.13% of all records could not be classified. The majority of service members represented in this analysis (89.5%) had 1 record for G6PD testing, 8.7% had 2 records, and the remaining 1.8% had 3 or more records (data not shown). Of those with more than 1 record where the classification changed, the following changes were observed: “Not Deficient” to “Deficient” (4.6%), “Unknown” to “Deficient” (3.7%), and “Unknown” to “Not Deficient” (91.7%) (data not shown).

Of the 2,311,223 service members identified in the laboratory records as having been tested, 83.3% were male and 16.7% were female. Sex was not indicated in 3,070 records (0.13%). Males were more likely to be classified as G6PD deficient (2.3%) than females (1.5%).

Race/ethnicity was classified as “other/unknown” in 3.0% of all records (Table 1). Non-Hispanic blacks were most likely to be classified as G6PD deficient (9.5%), followed by Asians/Pacific Islanders (2.9%) and Hispanics (1.5%). Non-Hispanic whites were the least likely to be classified as G6PD deficient (0.4%).

The G6PD classifications stratified by race/ethnicity and sex are shown in Table 2. Among males, non-Hispanic black service members were the most likely to be classified as G6PD deficient (11.2%), followed by Asian/Pacific Islander and Hispanic service members (3.3% and 1.7%, respectively). Non-Hispanic black males were more than twice as likely as non-Hispanic black females (4.7%) to be classified as G6PD deficient. Non-Hispanic black females had the highest proportion of G6PD deficiency of all female race/ethnicity groups. Although the non-Hispanic white race/ethnicity group represented the largest proportion of service members tested (59.8%), males and females in this race/ethnicity group were least likely to be G6PD deficient (0.4% and 0.3%, respectively).

Table 3 illustrates the G6PD results by service. The proportions of service members who tested positive for G6PD deficiency were broadly similar among the services. The Army had the highest percentage of service members with G6PD deficiency (2.7%), followed by the Air Force (2.3%) and Navy (2.2%). The Coast Guard (1.2%) and the Marine Corps (1.1%) had the lowest rates of service members with G6PD deficiency.

EDITORIAL COMMENT

The current study found an overall G6PD deficiency prevalence rate of 2.2% (n=49,897) among the 2,311,223 active and reserve component service members with laboratory results. To the authors’ knowledge, this is the largest study of G6PD deficiency screening among DoD service members. The results of the current analysis are consistent with other studies that have found that non-Hispanic black males are more likely to be G6PD deficient than any other race/ethnicity group.7–10

Before adoption of the newly FDA-approved tafenoquine as the primary force health protection measure for DoD service members against malaria infection, it is critical to understand the indications for prevention and treatment as well as the limitations.11 Regardless of an improved drug performance, including a radical curative efficacy, longer drug half-life, and once-weekly dosing regimen, tafenoquine still retains the risk of inducing hemolytic anemia in G6PD deficient individuals.

The results of this study must be interpreted within the context of several limitations. Laboratory records queried for this analysis were derived from fixed MTFs and do not include records from in-theater, shipboard, battalion aid station, or purchased care providers, although inclusion of these records, were they available, would not be expected to alter the findings presented herein. Genetic testing is generally performed during the accession phase of military service, so very few tests would need to be performed at austere or remote locations. Although validation steps were taken to avoid misclassification, it is possible that some results were misclassified. Because less than 1.0% of all records were classified as “Unknown,” it is unlikely that these results would change the overall prevalence rates. Final laboratory records were matched to the most recent DEERS record for each service member; a service member may have changed service affiliation after the laboratory testing, but this practice is uncommon. Additionally, laboratory data were derived from DoD service members and may not be generalizable to a larger U.S. civilian population.

Given the findings of the current analysis, DoD healthcare providers, Combatant Commanders, and their command surgeons in areas of responsibility that include malaria-endemic regions should remain aware of the risks of 8-AQ hemolytic anemia in G6PD deficient service members. In addition, targeted health education and risk management instruction should be provided to G6PD deficient service members in order to mitigate adverse health outcomes. Furthermore, continued implementation of the DoD’s G6PD screening instruction is required to mitigate G6PD deficiency-associated adverse events.

 

Author affiliations: Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD (MAJ Jangwoo Lee); Defense Health Agency, Combat Support, Healthcare Operations, Public Health Division, Armed Forces Health Surveillance Branch, Navy Satellite (Beth T. Poitras)

Acknowledgments: The authors thank LTC Chad C. Black, LTC Mara Kreishman-Deitrick, COL James E. Moon, COL Viseth Ngauy, MAJ Brandon S. Pybus, and Angela D. Schlein for their support of this analysis and report.

Disclaimer: The views expressed in this report are those of the authors and do not necessarily reflect the official policy or position of the Armed Forces Health Surveillance Branch, the Defense Health Agency, the Department of the Army, the Department of the Navy, the Department of Defense, or the U.S. Government. Analytic support was provided by the Armed Forces Health Surveillance Branch of the Public Health Division at the Defense Health Agency. Authors are employees of the U.S. Government. This work was prepared as part of their official duties. Title 17, U.S.C., §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17, U.S.C., §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties.


REFERENCES

1. Richardson SR, O'Malley GF. (2019). Glucose 6 phosphate dehydrogenase (G6PD) deficiency. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK470315/. Accessed 23 January 2019.

2. Luzzatto L, Arese P. Favism and glucose-6-phosphate dehydrogenase deficiency. N Eng J Med. 2018;378(1):60–71.

3. Department of Defense Instruction 6465.1. Hemoglobin S and erythrocyte glucose-6-phosphate dehydrogenase deficiency test program. 29 July 1981.

4. Webber BJ, Witkop CT. Screening for sickle-cell trait at accession to the United States military. Mil Med. 2014;179(11):1184–1189.

5. Department of Defense Instruction 6465.01. Erythrocyte glucose-6-phosphate dehydrogenase deficiency (G6PD) and sickle cell trait screening programs. 17 July 2015.

6. Department of Defense Instruction 6025.14. Active duty service members (ADSM) erythrocyte glucose-6-phosphate dehydrogenase (G6PD) deficiency and sickle cell trait (SCT) screening. 6 December 2018.

7. Chinevere TD, Murray CK, Grant E Jr, Johnson GA, Duelm F, Hospenthal DR. Prevalence of glucose-6-phosphate dehydrogenase deficiency in U.S. Army personnel. Mil Med. 2006;171(9):905–907.

8. Heller P, Best WR, Nelson RB, Becktel J. Clinical implications of sickle-cell trait and glucose-6-phosphate dehydrogenase deficiency in hospitalized black male patients. N Eng J Med. 1979;300(18):1001–5.

9. Tarlov AR, Brewer GJ, Carson PE, Alving AS. Primaquine sensitivity. Glucose-6-phosphate dehydrogenase deficiency: an inborn error of metabolism of medical and biological significance. Arch Intern Med. 1962;109:209–234.

10. Uddin DE, Dickson LG, Brodine CE. Glucose-6-phosphate dehydrogenase deficiency in military recruits. JAMA. 1974;227(12):1408–1409.

11. Fukuda M, Wojnarski M, Martin N, Zottig V, Waters NC. Editorial: Malaria in the Korean Peninsula: risk factors, latent infections, and the possible role of tafenoquine, a new antimalarial weapon. MSMR. 2018;25(11):2–3.

Results of G6PD deficiency laboratory testing among active duty DoD service members, 2004–2018

Classification of G6PD laboratory records among active duty DoD service members, by race/ethnicity and sex, 2004–2018

Classification of G6PD laboratory records among active duty DoD service members, by service, 2004–2018

You also may be interested in...

DHA recognizes 25 years of AFHSB's health surveillance journal

Article
8/12/2020
Medical technicians wearing masks and entering information on a computer

25 Years of Surveillance Reporting in Monthly Journal

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Article
8/1/2020
This is a medical illustration of drug-resistant, Shigella sp. bacteria, presented in the Centers for Disease Control and Prevention (CDC) publication entitled, Antibiotic Resistance Threats in the United States, 2019 (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Stephanie Rossow).

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Recommended Content:

Medical Surveillance Monthly Report

Diarrhea and Associated Illness Characteristics and Risk Factors Among British Active Duty Service Members at Askari Storm Training Exercise, Nanyuki, Kenya, January–June 2014

Article
8/1/2020
This illustration was updated in the Centers for Disease Control and Prevention’s (CDC’s) Antibiotic Resistance Threats in the United States, 2019. This illustration depicts a three-dimensional computer-generated image of a cluster of drug-resistant, curly-cue shaped, Campylobacter sp. bacteria. The artistic recreation was based upon scanning electron microscopic imagery (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Alissa Eckert).

Diarrhea and Associated Illness Characteristics and Risk Factors Among British Active Duty Service Members at Askari Storm Training Exercise, Nanyuki, Kenya, January–June 2014

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Acute Gastrointestinal Infections and Diarrhea, Active Component, U.S. Armed Forces, 2010–2019

Article
8/1/2020
This illustration was updated in the Centers for Disease Control and Prevention’s (CDC’s) Antibiotic Resistance Threats in the United States, 2019. This illustration depicts a three-dimensional, computer-generated image of a group of extended-spectrum ß-lactamase-producing Enterobacteriaceae bacteria, in this case, Escherichia coli. The artistic recreation was based upon scanning electron microscopic imagery. This is an excellent visual example of the long, whip-like, peritrichous flagellae, sprouting from what appear to be random points on the organism’s exterior, as well as the numerous shorter, and finer fimbriae, imparting a furry look to the bacteria (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Alissa Eckert).

Update: Incidence of Acute Gastrointestinal Infections and Diarrhea, Active Component, U.S. Armed Forces, 2010–2019

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Norovirus Outbreaks in Military Forces, 2015–2019

Article
8/1/2020
Based on electron microscopic imagery, this three-dimensional illustration provides a graphical representation of a single norovirus virion. Though subtle, the different colors represent different regions of the organism’s outer protein shell, or capsid (Content provider: CDC/Jessica A. Allen; Photo credit: CDC/Alissa Eckert).

Surveillance Snapshot: Norovirus Outbreaks in Military Forces, 2015–2019

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Cervical Cancer Screening Among U.S. Military Service Women in the Millennium Cohort Study, 2003–2015

Article
7/1/2020
Lt. Cmdr. Leslye Green, staff obstetrician and gynecologist, Naval Hospital Pensacola (NHP), uses a model to discuss cervical cancer with a patient at NHP. According to the Centers for Disease Control and Prevention (CDC), cervical cancer is highly preventable because screening tests for cervical cancer and vaccines to protect against human papillomavirus (HPV), which is the main cause of cervical cancer, are readily available. Cervical cancer is highly treatable and associated with long survival and good quality of life when it is detected early. (U.S. Navy photo by Mass Communication Specialist 1st Class Brannon Deugan)

Surveillance Snapshot: Cervical Cancer Screening Among U.S. Military Service Women in the Millennium Cohort Study, 2003–2015

Recommended Content:

Medical Surveillance Monthly Report

Epidemiology of Functional Neurological Disorder, Active Component, U.S. Armed Forces, 2000-2018

Article
7/1/2020
MRI film (iStock.com/temet)

Epidemiology of Functional Neurological Disorder, Active Component, U.S. Armed Forces, 2000-2018

Recommended Content:

Medical Surveillance Monthly Report

Hearing Conservation Measures of Effectiveness Across the Department of Defense

Article
7/1/2020
Kori Reese, an audiology technician at Naval Branch Health Clinic Jacksonville’s occupational health clinic, conducts a hearing exam with Airman Diosney Moraga. Naval Hospital Jacksonville and Navy Medical Readiness and Training Command Jacksonville won the Chief of Naval Operation’s Award for Achievement in Ashore Safety (large non-industrial command) for Fiscal Year 2019. (U.S. Navy photo by Jacob Sippel).

Recommended Content:

Medical Surveillance Monthly Report

Alcohol-Related Emergency Department Visits, Hospitalizations, and Co-Occurring Injuries, Active Component, U.S. Armed Forces, 2009–2018

Article
7/1/2020
Sailors simulate a drunk driving accident during a Keep What You've Earned fair on Naval Base Kitsap Bangor. The fair encourages responsible alcohol use by celebrating the achievements in the sailors' Navy careers and actively engages sailors as advocates for responsible drinking. (U.S. Navy photo by Mass Communication Specialist 3rd Class Chris Brown)

Recommended Content:

Medical Surveillance Monthly Report

Animal-Related Injuries in Veterinary Services Personnel, U.S. Army, 2001–2018

Article
6/1/2020
Robin Jones (right), a retired Soldier and current veterinarian who works at the Fort Stewart Veterinary Treatment Facility, is being assisted by Spc. Krystall Shaw, an animal care specialist assigned to the clinic, as Jones uses a stethoscope on a patient to listen for proper breathing at the Fort Stewart Veterinary Treatment Facility on Fort Stewart, Georgia, April 10, 2020. The staff at the clinic continues to provide aid to working and privately owned animals during the COVID-19 pandemic. (U.S. Army photo by Sgt. Zoe Garbarino)

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Direct Care Cost of Heat Illness to the Army, 2016–2018

Article
6/1/2020
Thermometer (Photo credit: U.S. Army)

Brief Report: Direct Care Cost of Heat Illness to the Army, 2016–2018

Recommended Content:

Medical Surveillance Monthly Report

Summary of the 2018–2019 Influenza Season Among Department of Defense Service Members and Other Beneficiaries

Article
6/1/2020
A flu shot vaccination sits on a table at 184th Sustainment Command headquarters in Monticello, Mississippi on Feb. 8, 2020. The single best way to prevent seasonal flu is to get vaccinated each year, but good wellness habits like covering your cough and washing your hands often can help prevent the spread of germs. (Mississippi Army National Guard photo by Staff Sgt. Veronica McNabb)

Recommended Content:

Medical Surveillance Monthly Report

Letter to the Editor: G6PD Deficiency in the Tafenoquine Era

Article
6/1/2020
CDC/James Gathany This image shows a female Anopheles funestus mosquito that had landed on a human skin surface and was in the process of obtaining its blood meal. A. funestus is a known vector for the parasitic disease malaria.

Letter to the Editor: G6PD Deficiency in the Tafenoquine Era

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Illness and Injury Burdens, Recruit Trainees, Active Component, U.S. Armed Forces, 2019

Article
5/1/2020
A Marine Corps Staff Sgt inspects a platoon. (U.S. Marine Corps Lance Cpl. Zachary Beatty)

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2019

Article
5/1/2020
A physician examines and educates a patient. (U.S. Navy photo by Jacob Sippel, Naval Hospital Jacksonville/Released)

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 11

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.