Back to Top Skip to main content

Air Force studies fatigue, sleep to enhance readiness

An Air Force Airman sleeps inside a C-17 Globemaster III during a flight over an undisclosed location in support of Operation Freedom Sentinel. (U.S. Air Force photo illustration) An Air Force Airman sleeps inside a C-17 Globemaster III during a flight over an undisclosed location in support of Operation Freedom Sentinel. (U.S. Air Force photo illustration)

Recommended Content:

Health Readiness | Sleep

FALLS CHURCH, Va. — The Air Force is studying sleep habits among Airmen to find ways to improve performance and ensure their readiness to support the mission.

Researchers with the Air Force Research Laboratory’s 711th Human Performance Wing, Wright-Patterson Air Force Base in Ohio, are looking for ways to better equip Airmen and their leadership with crucial data to ensure that Airmen are getting the necessary rest and to maximize mission execution.

A team of human performance experts is looking at sleep and fatigue from several perspectives. They are tracking sleep habits in pilots and other operators, while also evaluating sleep-monitoring technology to ensure its accuracy and ability to work in an operational setting.

“It’s a multi-pronged approach to studying sleep and fatigue,” said Dr. Glenn Gunzelmann, training core technical competency lead for the Airman Systems Directorate in the 711th HPW. “Providing Airmen with information on their sleep patterns and history helps Airmen understand how sleep effects their operational effectiveness. Giving leadership this data also helps inform policy and how to account for sleep needs in their planning.”’

Gunzelmann, along with Air Force Lt. Col. Dara Regn, Internal Medicine Branch chief for the U.S. Air Force School of Aerospace Medicine in the 711th HPW, participate in a NATO aircrew fatigue management working group. Regn leads the working group, which also includes Army and Navy researchers. The goal is to pool their expertise and research to address common issues and challenges.

“Our current operations cross over multiple time zones, resulting in circadian rhythm issues, sleep deprivation or insufficient sleep,” said Regn. “As partner nations we all deal with similar challenges like increased mission tempo, long-range missions and pilot shortages. We are working together to optimize our pilots and bring back the importance of sleep.”

This NATO working group is currently building a “sleep toolbox” for aviators and those who take care of them. The toolbox helps them identify and mitigate sub-optimal sleep habits.

According to Regn, the sleep toolbox will have educational resources on fatigue risk assessment with ways to mitigate this. It will also have information on insomnia, including cognitive behavioral therapy for insomnia and other sleep disorders.

“These resources will be made available through an open source NATO website and secure offline application,” said Regn. “The application allows users to optimize their sleep and is a resource for reliable advice on improving sleep quality in operational settings.”

Similarly, the 711th HPW is also developing an application that can track current and future levels of effectiveness base on an individual’s sleep and wakefulness data.

Good sleep habits are closely related to overall health and performance.

“Sleep is an essential life function that many overlook,” said Regn. “Compromised sleep has significant consequences. About 80 perecent of aviation accidents are due to human error, and pilot fatigue accounts for about 15 to 20 percent of that.”

According to Regn, many Airmen do not get enough sleep often due to behavioral factors. The demands of work, family and other responsibilities make getting a good night’s sleep a lower priority. Deployment can also add to sleep challenges.

“Poor sleep quality can be exacerbated by our mission tempo and demands,” said Regn. “In an operational setting, it can be hard to adapt, making it more challenging to complete long-range missions.”

The 711th's sleep and fatigue research is aimed at equipping the Air Force with the information needed to assess effectiveness, identify risks that may impact the mission, and prevent aviation errors while improving the health and safety of all Airmen.

“Our research, policies and mitigation strategies take into account that these Airmen have lives outside of their operational responsibilities that impact their sleep patterns and can cause fatigue,” said Gunzelmann. “We can equip Airmen with the right information to optimize their sleep habits to enhance health and mission performance.”

Disclaimer: Re-published content may be edited for length and clarity. Read original post.

You also may be interested in...

Morbidity Burdens Attributable to Various Illnesses and Injuries

Infographic
5/23/2018
Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Member, U.S. Armed Forces, 2017

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Member, U.S. Armed Forces, 2017

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Ambulatory Visits, Active Component, U.S. Armed Forces, 2017

Infographic
5/23/2018
ACTIVE COMPONENT, U.S. ARMED FORCES, 2017  This report documents the frequencies, rates, trends, and characteristics of ambulatory healthcare visits of active component members of the U.S. Army, Navy, Air Force, and Marine Corps.

ACTIVE COMPONENT, U.S. ARMED FORCES, 2017 This report documents the frequencies, rates, trends, and characteristics of ambulatory healthcare visits of active component members of the U.S. Army, Navy, Air Force, and Marine Corps.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Hospitalizations, Active Component, U.S. Armed Forces, 2017

Infographic
5/23/2018
This report documents the frequencies, rates, trends, and distributions of hospitalizations of active component members of the U.S. Army, Navy, Air Force, and Marine Corps during calendar year 2017.

This report documents the frequencies, rates, trends, and distributions of hospitalizations of active component members of the U.S. Army, Navy, Air Force, and Marine Corps during calendar year 2017.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens, Attributable to Various Illnesses and Injuries, 2017

Infographic
5/23/2018
Absolute and Relative Morbidity Burdens, Attributable to Various Illnesses and Injuries, 2017

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Member, U.S. Armed Forces, 2017

Infographic
5/23/2018
Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Member, U.S. Armed Forces, 2017

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Rhabdomyolysis

Infographic
4/13/2018
Rhabdomyolysis

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Heat Illness

Infographic
4/13/2018
Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

There were a total of 2,163 incident cases of heat illness among active component service members, including 464 cases of heat stroke and 1,699 cases of heat exhaustion.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Hyponatremia

Infographic
4/13/2018
Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

Exertional, or exercise-associated, hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 milliequivalents/liter) that develops during or up to 24 hours following prolonged physical activity.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Cardiovascular Diseases

Infographic
4/4/2018
At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

At the time of entry into military service, many members of the U.S. Armed Forces are young, physically active, and in good physical health. However, following entry, many service members develop or are discovered to have risk factors for cardiovascular disease (CVD). This report documents the incidence and prevalence of select risk factors for CVD among active component (AC) service members and provides estimates of the incidence rates of major categories of cardiovascular diseases themselves.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report

Mental Health Problems

Infographic
4/4/2018
This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

This report summarizes the numbers, natures, and rates of incident mental health disorder diagnoses as well as mental health problems among active component U.S. service members during 2007–2016.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report

Surveillance for Vector-Borne Diseases, Active and Reserve Component Service Members, U.S. Armed Forces, 2010 – 2016

Infographic
2/14/2018
Within the U.S. Armed Forces considerable effort has been applied to the prevention and treatment of vector-borne diseases. A key component of that effort has been the surveillance of vector-borne diseases to inform the steps needed to identify where and when threats exist and to evaluate the impact of preventive measures. This report summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period. For the 7-surveillance period, there were 1,436 confirmed cases of vector-borne diseases, 536 possible cases, and 8,667 suspected cases among service members of the active and reserve components. •	“Confirmed” case = confirmed reportable medical event. •	“Possible” case = hospitalization with a diagnosis for a vector-borne disease. •	“Suspected” case = either a non-confirmed reportable medical event or an outpatient medical encounter with a diagnosis of a vector-borne disease. Lyme disease (n=721) and malaria (n=346) were the most common diagnoses among confirmed and possible cases. •	In 2015, the annual numbers of confirmed case of Lyme disease were the fewest reported during the surveillance period. •	Diagnoses of Chikungunya (CHIK) and Zika (ZIKV) were elevated in the years following their respective entries into the Western Hemisphere: CHIK (2014 and 2015); ZIKV (2016). The available data reinforce the need for continued emphasis on the multidisciplinary preventive measures necessary to counter the ever-present threat of vector-borne disease. Access the full report in the February 2018 MSMR (Vol. 25, No. 2). Go to www.Health.mil/MSMR  Background graphic shows service member in the field and insects which spread vector borne diseases.

This infographic summarizes available health records information about the occurrence of vector-borne infectious diseases among members of the U.S. Armed Forces, during a recent 7-year surveillance period (2010 – 2016).

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Preventing Mosquito-Borne Illnesses | Chikungunya | Malaria | Zika Virus

Malaria U.S. Armed Forces, 2017

Infographic
2/14/2018
Since 1999, the Medical Surveillance Monthly Report (MSMR) has published periodic updates on the incidence of malaria among U.S. service members. Malaria infection remains an important health threat to U.S. service members, who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces. Findings •	A total of 32 service members were diagnosed with or reported to have malaria, which is the lowest number of cases in any given year during the 10-year surveillance period. •	Health records documented the performance of laboratory tests for malaria for 22 of the cases. The tests for 17 of the 22 were positive for malaria ( stick figure graphic visually depicts this information). •	In 2017, 75.0% (24 of 32) of malaria cases among U.S. service members were diagnosed during May – October (calendar graphic showing the months visually). •	Of the 32 malaria cases in 2017, more than 1/3 of the infections were considered to have been acquired in Africa. Two bar charts display the following information: •	Bar chart 1: Numbers of malaria cases by Plasmodium species and calendar year of diagnosis/report, active and reserve components, U.S. Armed Forces, 2008 – 2017  •	Bar chart 2: Annual numbers of cases of malaria associated with specific locations of acquisition, active and reserve components, U.S. Armed Forces, 2008 – 2017  The majority of U.S. military members diagnosed with malaria in 2017 were: •	Male (96.9%) •	Active component (81.3%) •	In the Army (75.0%) •	In their 20’s (56.3%) Access the full report in the February 2018 MSMR (Vol. 25 No. 2). Go to www.Health.mil/MSMR  Picture of a mosquito displays on the graphic.

This update for 2017 describes the epidemiologic patterns of malaria incidence in active and reserve component service members of the U.S. Armed Forces.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report

Department of Defense Global, Laboratory-based Influenza Surveillance Program’s Influenza vaccine effectiveness estimates and surveillance trends, 2016 – 2017 Influenza Season

Infographic
2/5/2018
Each year, the Department of Defense (DoD) Global, Laboratory-based Influenza Surveillance Program performs surveillance for influenza among service members of the DoD and their dependent family members. In addition to routine surveillance, vaccine effectiveness (VE) studies are performed and results are shared with the Food and Drug Administration, Centers for Disease Control and Prevention, and the World Health Organization for vaccine evaluation. This report documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season VE results. The analysis was performed by the U.S. Air Force School of Aerospace Medicine Epidemiology Laboratory, and the DoD Influenza Surveillance Program staff at Wright-Patterson Air Force Base, OH. FINDINGS: A total of 5,555 specimens were tested from 84 locations: •	2,486 (44.7%) negative •	1,382 (24.9%) influenza A •	1,093 (19.7%) other respiratory pathogens •	443 (8.0%) influenza B •	151 (2.7%) co-infections The predominant influenza strain was A (H3N2), representing 73.8% of all circulating influenza. Pie chart displays this information. Graph showing the numbers and percentages of respiratory specimens positive for influenza viruses, and numbers of influenza viruses identified, by type, by surveillance week, Department of Defense healthcare beneficiaries, 2016 – 2017 influenza season displays. The vaccine effectiveness (VE) for this season was slightly lower than for the 2015 – 2016 season, which had a 63% (95% confidence interval: 53% - 71%) adjusted VE. The adjusted VE for the 2016 – 2017 season was 48% protective against all types of influenza.  Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This infographic documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season vaccine effectiveness.

Recommended Content:

Health Readiness | Influenza Summary and Reports | Medical Surveillance Monthly Report | Vaccine-Preventable Diseases | Force Health Protection | Global Health Engagement

Outbreak of Influenza and Rhinovirus co-circulation among unvaccinated recruits, U.S. Coast Guard Training Center Cape May, NJ, 24 July – 21 August 2016

Infographic
2/5/2018
On 29 July 2016, the U.S. Coast Guard Training Center Cape May (TCCM), NJ, identified an increase in febrile respiratory illness (FRI) among recruits who were unvaccinated against seasonal influenza as a result of the annual vaccine’s expiration. This report characterizes the outbreak and containment measures implemented at TCCM during the outbreak period. In 2016, respiratory infections affected more than 250,000 U.S. service members and comprised approximately 22% of medical encounters among military recruit populations – who are highly susceptible to respiratory infections. Seasonal influenza and rhinovirus are two of the leading respiratory pathogens. During the Surveillance Period: 115 recruits reported respiratory infection symptoms. Pie chart 1 shows the following data: •	41 (35.7%) suspected cases •	74 (64.3%) confirmed cases Among confirmed cases, lab specimens tested positive for: •	Influenza A 34 (45.9%) •	Rhinovirus 28 (37.8%) •	Influenza A and rhinovirus co-infection 11 (14.9%) •	Rhinovirus and adenovirus co-infection 1 (1.4%) Data above depicted in pie chart 2. •	24 July – 6 August, Influenza predominated •	7 August – 20 August, Rhinovirus predominated Although the outbreak significantly affected operations at TCCM, a timely and comprehensive response resulted in containment of the outbreak within 5 weeks. Key Factor for Outbreak Control •	Rapid detection through FRI sentinel surveillance •	Quick decision-making •	Streamlined response by using a single chain of command •	Rapid implementation of both nonpharmaceutical and pharmaceutical interventions Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This report characterizes the outbreak and containment measures implemented at the U.S. Coast Guard Training Center Cape May (TCCM), New Jersey, during a July 24 – August 21, 2016 outbreak period.

Recommended Content:

Health Readiness | Medical Surveillance Monthly Report | Integrated Biosurveillance | Influenza Summary and Reports

Insomnia and motor vehicle accident-related injuries, Active Component, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
Insomnia is the most common sleep disorder in adults and its incidence in the U.S. Armed Forces is increasing. A potential consequence of inadequate sleep is increased risk of motor vehicle accidents (MVAs). MVAs are the leading cause of peacetime deaths and a major cause of non-fatal injuries in the U.S. military members. To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia. After adjustment for multiple covariates, during 2007 – 2016, active component service members with insomnia had more than double the rate of MVA-related injuries, compared to service members without insomnia. Findings:  •	Line graph shows the annual rates of motor vehicle accident-related injuries, active component service members with and without diagnoses of insomnia, U.S. Armed Forces, 2007 – 2016  •	Annual rates of MVA-related injuries were highest in the insomnia cohort in 2007 and 2008, and lowest in 2016 •	There were 5,587 cases of MVA-related injuries in the two cohorts during the surveillance period. •	Pie chart displays the following data: 1,738 (31.1%) in the unexposed cohort and 3,849 (68.9%) in the insomnia cohort The highest overall crude rates of MVA-related injuries were seen in service members who were: •	Less than 25 years old •	Junior enlisted rank/grade •	Armor/transport occupation •	 •	With a history of mental health diagnosis •	With a history of alcohol-related disorders Access the full report in the December 2017 (Vol. 24, No. 12). Go to www.Health.mil/MSMR Image displays a motor vehicle accident.

To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia.

Recommended Content:

Armed Forces Health Surveillance Branch | Health Readiness | Medical Surveillance Monthly Report
<< < 1 2 3 4 5 > >> 
Showing results 46 - 60 Page 4 of 5

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.