Skip to main content

Military Health System

Animal-Related Injuries in Veterinary Services Personnel, U.S. Army, 2001–2018

Image of Soldier and veterinarian assisted by animal care specialist use a stethoscope on a dog. Robin Jones (right), a retired Soldier and current veterinarian who works at the Fort Stewart Veterinary Treatment Facility, is being assisted by Spc. Krystall Shaw, an animal care specialist assigned to the clinic, as Jones uses a stethoscope on a patient to listen for proper breathing at the Fort Stewart Veterinary Treatment Facility on Fort Stewart, Georgia, April 10, 2020. The staff at the clinic continues to provide aid to working and privately owned animals during the COVID-19 pandemic. (U.S. Army photo by Sgt. Zoe Garbarino)

Recommended Content:

Medical Surveillance Monthly Report

What are the new findings?

The yearly incidence of animal-related injuries to U.S. Army VS personnel did not change significantly from 2001–2018. Dog bites were the most common type of animal-related injury. Being female, younger, and a veterinary technician were all associated with an increased risk for animal-related injury.

What is the impact on readiness and force health protection?

Risk of injury among VS personnel varied by sex, age, and occupation. Leaders within the VS must ensure that there are no disparities in training or equipping the veterinary force to handle animals properly and that animal-related injury prevention measures are in place and prioritized.

Abstract

Limited data exist on animal-related injuries in the U.S. Army veterinary service (VS). The purpose of this study was to determine the incidence of animal-related injuries and the associated risk factors in VS personnel. A retrospective cohort study was conducted using military healthcare surveillance data on animal-related injuries in VS personnel from 2001–2018. Yearly incidence of medically diagnosed animal-related injuries ranged from 25–50 injuries per 1,000 person-years from 2001–2018. Linear regression showed no significant trend in the incidence rate per year over the study period (R²=0.005). Bites were the most common injury (86.5%), with dog bites (44.3%) being the most common injury type and dogs the most common species implicated. After controlling for sex, age group, race/ethnicity group, and occupation, adjusted incidence rate ratios (AIRRs) showed significantly elevated risk for animal-related injuries among females compared to males (AIRR=1.69; 95% confidence interval [CI]: 1.45–1.99), soldiers aged 17–29 compared to those aged 30 years or older (AIRR=2.55; 95% CI: 2.12–3.08), and technicians compared to veterinarians (AIRR=1.57; 95% CI: 1.30–1.89). Unlike the majority of published literature on veterinary occupational health and safety, this study showed a clear increased risk of diagnoses of injury among females compared to males.

Background

The U.S. Army veterinary service (VS) comprises enlisted soldiers serving as animal care specialists and veterinary food inspection specialists, veterinary corps officers (VCOs: veterinarians and food safety officers), and Department of the Army civilians. The VS serves as the lead organization for the animal health mission within the Department of Defense (DOD). This mission includes, but is not limited to, the clinical and surgical care of military working dogs (MWDs), DOD-owned animals used in research, and the privately owned pets of DOD service members and their beneficiaries.

Because of the broad responsibilities and specialized skill sets of veterinarians and veterinary technicians, there are unique occupational risks related to animal exposure. Physical injuries from an animal by a bite, scratch, or other physical strike during restraint, treatment, or handling are the most common circumstances for veterinary occupational injuries. In the civilian community, animal-related injuries to veterinarians and technicians have been well documented.1–7 Data on the prevalence or incidence and associated risk of animal-related injuries to U.S. Army VS personnel are limited, however. Between 2001 and 2010, 433 (2.1%) of the approximately 20,000 animal bites to service members were to VS personnel.8 In a more recent publication, of the approximately 22,000 animal bite cases among reserve and active component service members during 2011–2018, 537 (2.4%) were among VS personnel. The crude incidence rate of animal bites in VS personnel was 438 per 100,000 person-years (p-yrs) from 2011 through 2018. This incidence rate was second only to the rate of animal bites among service members working in military law enforcement.9 These data on U.S. Armed Forces pertained to animal bites only and did not show specific incidence rates for demographic, occupational, or military subgroups of service members within the VS (i.e., age groups, sex, veterinarians vs. technicians, junior enlisted vs. senior enlisted).

In the veterinary profession, animal bites and scratches can be frequent and their severity can range from requiring only basic first aid to necessitating hospitalization. Furthermore, these injuries have a high probability of causing secondary wound infections and/or long-term disabilities.1,2,4 It has been estimated that between 50%–67% of veterinarians and up to 98% of veterinary technicians have had an animal-related injury during their careers.4 Musculoskeletal diseases and other conditions secondary to or indirectly related to animal exposure and work are also common within the veterinary community. These exposures may include heavy lifting, repetitive motions, anesthetic gases, x-rays, needle stick injuries, and a variety of toxic pesticides and therapeutic agents.10–12

For the purposes of this study, animal-related injuries were limited to those caused by mammalian species and do not include injuries from venomous reptiles or arthropods. The specific type of animal-related injury varies by frequency and risk, depending upon the predominant mammalian species with which a veterinary professional is working. Overall, the most dangerous animals to work around are cattle and horses. Injuries caused by these large mammalian species account for the most human fatalities and are responsible for many serious crush and kick injuries.2,5 One survey-based study of members of the American Association of Swine Practitioners reported that needle stick injuries were the most common type of animal-related injury and that 22% of swine practitioners reported having a diagnosis of hearing impairment.13 Small animal practitioners' animal-related injuries are mostly confined to dog and cat bites and/or scratches. However, there is variability between studies on the prevalence and severity of dog vs. cat bites and/or scratches.1–7

VS personnel have the most experience and are the subject matter experts in animal handling and animal-related safety for the DOD. To maintain their expertise in this field, and in order to train others on safe animal handling practices, the VS needs to ensure that their methods are as safe and effective as possible. Increasing the overall readiness of VS soldiers requires a targeted training approach for risk mitigation of animal-related injuries. Determining the most at-risk members of the VS population could inform the development, refinement, and targeted implementation of prevention strategies to further reduce animal-related injuries within the VS.

The purpose of this study was to determine the incidence of medically documented animal-related injuries among active component VS personnel from 2001 through 2018 and the associated risk factors. Based on a review of the published literature and experience in the VS, it was hypothesized that young age, male sex, and occupation as a technician would be associated with an increased risk for animal-related injuries within this population.

Methods

This report describes a retrospective cohort study of active component VS soldiers and VCOs from 1 January 2001 through 31 December 2018. Deidentified demographic and medical encounter data were provided by the Armed Forces Health Surveillance Branch of the Defense Health Agency. Institutional Review Board (IRB) approval was obtained from the Uniformed Services University IRB. Service members with U.S. Army military occupational specialty (MOS) codes 91T and 68T (animal care specialists, hereafter referred to as technicians) and all 64 series (64A, 64B, 64C, 64D, 64E, 64F, 64Z, hereafter referred to a veterinarians) constituted the population of interest.

Animal-related injury events (cases) were identified from inpatient and outpatient encounter data among garrison-stationed VS personnel and did not include deployed or in-theater cases. Each active component VS member with a medical encounter that included a diagnostic code indicative of an animal-related injury (i.e., nonvenomous mammal bite, scratch, or other nonvenomous mammalian-related injury type) in any diagnostic position within the described surveillance period was defined as a case. Case-defining codes included International Classification of Diseases, 9th Revision (ICD-9) codes E906.0, E906.1, E906.3, E906.5, E906.8, and E906.9 and International Classification of Diseases, 10th Revision (ICD-10) codes W53.*, W54.*, and W55.*.

After a diagnosis met the definition of a case, any subsequent diagnosis of an animal-related injury was not counted as an incident case unless at least 90 days had passed since the prior diagnosis with the same animal-related injury–defined ICD code or the subsequent ICD code was different from the prior animal-related injury ICD code. This criterion reduced the likelihood of double counting cases who were receiving follow-up care for the original injury. Person-time sums for the populations of technicians and veterinarians during the study period were calculated overall, by year, and by demographic variables. The demographic variables describing each member of the cohort were the following: MOS (91T/68T or 64 series), age group (17–19, 20–29, 30–39, and 40+ years), sex (male or female), and race/ethnicity group (non-Hispanic white, non-Hispanic black, Hispanic, Asian/Pacific Islander, American Indian/Alaska Native, and other/unknown), and rank/grade (junior enlisted [E1–E4], senior enlisted [E5–E9], junior officer [O3–O4], and senior officer [O5–O10]).

Grade/rank was not included as a variable for calculating risk because the definitions of the rank categories are not appropriate to the ranks of VCOs. Because of relatively small cell sizes in the youngest and the oldest age groups, combined age groups of 17–29 years and 30 years or older were created. Similarly, the “non-Hispanic black” and “other/unknown” race/ethnicity groups were combined to allow for comparison to the non-Hispanic white group. This simplification allowed for a binomial assessment of all demographic parameters (i.e., male vs. female, veterinarian vs. technician, old vs. young, and white vs. non-white).

Descriptive statistics were used to analyze the incidence rates of animal-related injuries according to the demographic variables within the populations of technicians and veterinarians. Animal bites with ICD-9 codes that were not indicative of a dog or rat (ICD-9: E906.3 and E906.5) or with ICD-10 codes that were not indicative of a dog, rat, cat, horse, cow, hoof stock, pig, or raccoon (ICD-10: 55.81*) were classified as "other". Each type of animal-related injury was totaled by species and injury type to the highest specificity allowed by ICD coding. Injury counts by type and species were presented as totals and percentages of all injuries in the cohort during 2001–2018. Yearly incidence rates for the study period were calculated by dividing the total number of incident cases for each year by the sum of p-yrs for that year. Incidence rates were calculated as incident animal-related injury diagnoses per 1,000 p-yrs. The linear trendline function in Microsoft Excel for Office 365 was used to assess the fit (R2) of a regression line to the annual incidence rates over time (2018, Microsoft Corporation, Redmond, WA).

Multivariable Poisson regression models were used to calculate adjusted incidence rate ratios (AIRRs) and 95% confidence intervals (CIs) controlling for sex, combined age group, combined race/ethnicity group, and occupation. Statistical significance was defined as p < .05. With the exception of the simple trendline assessment, statistical analyses were carried out using Stata/IC, version 15 (2015, StataCorp LLC, College Station, TX).

Results

A total of 772 incident animal-related injury diagnoses were ascertained among VS personnel from 2001 through 2018, resulting in an overall incidence rate of 37.7 per 1,000 p-yrs (Table 1). The subgroup with the highest crude incidence rate was technicians aged 17–19 years, at 91.8 injuries per 1,000 p-yrs. During the surveillance period, approximately 43 incident animal-related injuries were diagnosed per year among VS personnel, with the lowest counts of injuries in 2001 (n=26) and the highest in 2017 (n=58) (Figure 1). Examination of crude incidence rates of animal-related injury diagnoses over time showed no linear trend (R2=0.005); annual rates fluctuated between 50.1 per 1,000 p-yrs in 2013 and 24.4 per 1,000 p-yrs in 2018 (data not shown). Compared to their respective counterparts, technicians, females, those in younger age groups, non-Hispanic white VS personnel, and junior enlisted soldiers had the highest crude rates for animal-related injuries (Table 1).

Of all injuries counted, 668 (86.5%) were bites from a variety of species (Table 2, Figure 2). Of all the animal-related injuries, dog bites were the single most common type, with a total of 342 (44.3%). "Other" bites accounted for 34.7% (n=268) of the total. Only 11 recorded injuries were caused by large-bodied mammal species. Of the 772 total injuries, 553 (71.6%) were sustained by veterinary technicians, while only 219 (28.4%) were sustained by veterinarians. The majority of animal-related injuries were among females (n=515; 66.7%) (Table 1). Of the technicians’ injuries, 435 (78.7%) were in junior enlisted soldiers, and of the veterinarians’ injuries, 214 (97.7%) were in junior officers. More than three-quarters (78.1%) of the animal-related injuries were among non-Hispanic white soldiers.

Unadjusted IRRs revealed a more than 2-fold increased risk in sustaining a diagnosis of an animal-related injury for females vs. males (IRR=2.17; 95% CI: 1.87–2.52), technicians vs. veterinarians (IRR=2.52; 95% CI: 2.15–2.94), and those 17–29 years old vs. those 30+ years old (IRR=3.54; 95% CI: 3.03–4.13) (Table 3). After adjustment for sex, age, race/ethnicity, and occupation, these differences in rates remained statistically significant. Even after combining minority race/ethnicity categories, non-Hispanic white soldiers showed a 56% increased incidence of animal-related injury compared with the combined non-Hispanic black/other/unknown group in the adjusted model (AIRR=1.56; 95% CI: 1.31–1.86) (Table 3).

Editorial Comment

The results of this study indicate that technicians, females, and younger soldiers were at a higher risk of sustaining an animal-related injury when compared to veterinarians, males, and older soldiers, respectively. Even in the adjusted analysis, there was at least a 50% increase in risk for younger individuals, technicians, and females when compared to older individuals, veterinarians, and males, respectively (Table 3). The explanation for the increased risk observed in females compared to males is not immediately apparent. In VS clinical operations, males are frequently selected for riskier tasks involving the handling of aggressive animals because of physical stature or strength. Furthermore, the “white male effect” has been previously described in risk perception literature, showing that white males tend to perceive less risk than women and minorities.14 If the perception of risk is higher in females than in males in the VS cohort described here, it was not reflected in a decreased rate of animal-related injuries for females. An additional potential explanation for the increased risk of injury to female compared to male VS personnel may be related to differences in their healthcare-seeking behavior. Health behavior literature cites that females are more likely to utilize healthcare services than males, and it is possible that the increased incidence of injuries in females is a reporting bias due to their increase in healthcare seeking behavior.15

One survey of Canadian veterinarians showed an increase in the odds of injury for females compared to males.10 However, in an Australian veterinary injury study, Lucas and colleagues found that even with the increase in female veterinarians in the profession, a larger percentage of animal-related injuries was found in males.2 To date, a literature search has not found a study describing the relationship of sex with animal-related injuries among veterinary technicians. Nordgren and colleagues6 discussed work-related risk factors for animal-related injuries in certified veterinary technicians. However, they were unable to include sex in their statistical models because 97% of the study participants were female.

An increased risk for technicians to sustain an injury in the VS is conceivable, as technicians work with many more animals and would have more animal contact than a veterinarian. An increased risk of an animal-related injury for technicians when compared to veterinarians is well documented in the published literature.1,3,4

Several previous studies have shown that younger age increases the risk of sustaining an animal-related injury.6,8,9,12 Regarding the increased rate of animal-related injuries in younger service members, this finding could be related to experience and work type. Junior enlisted soldiers and junior officers generally have more direct animal contact than their superiors. The frequency of animal contacts decreases dramatically as a VS soldier increases in rank (and consequently age), and the chance of injury is simply decreased as a result. Furthermore, those who have served in their career field longer may be less likely to suffer injuries or to seek medical care for injuries because they perceive them as minor. Moreover, junior soldiers might be directed or required to seek care for an injury by their superiors, whereas a more senior soldier may be able to more readily decline medical attention.

Previous research has described the type of animal-related injury by species and veterinary practice type.4,5,7,10,13 VS clinical operations can be described as a mostly “small animal practice” for civilian veterinary clinic comparisons. In the civilian population, Fowler and colleagues4 found that cats were the most likely species to cause an injury in small animal practice.4,6 However, other studies have found that the highest incidence of animal-related injuries in small animal clinics is attributable to dogs.2,16 The number of cat-related injuries in the VS cohort during 2001–2018 was 55 (48 bites and 7 scratches). Unfortunately, the granularity of ICD-9 codes were unable to indicate cats as a species type. The incident cases of cat-related injuries counted in this study were counted from 2015–2018, following the introduction of ICD-10 coding into the Military Health System. As a result, many “other” bites from before 2015 may have been cat bites that were not identifiable as such.

The present study had a very specific population definition that is demographically unique compared to civilian small animal veterinary clinics. The uniqueness of this population makes it difficult to generalize the results and make statistical comparisons to other cohort, case control, or cross-sectional studies regarding animal-related injuries in veterinary professionals. The most significant differences between this study and published literature on the topic are the roughly equal numbers of females and males within the population studied and the identification of female gender as a risk factor. Therefore, the analysis discussed here is unique in that gender was able to be evaluated as a risk factor in animal-related injuries within the veterinary profession.

Unfortunately, there is no way to know the number of animal-related injuries for which the VS personnel did not seek healthcare. Presumably, most animal-related injuries in VS service members are very minor, and the medically diagnosed incidence rates calculated here are very likely to be an underestimation of the true injury burden.9 Self-treatment and lack of injury reporting in veterinary professionals have been previously described.1,4,13,17,18 The change in ICD coding from ICD-9 to ICD-10 in 2015 altered the categorical or species type of some injuries and made it difficult to determine total and accurate risk by animal species for the entire surveillance period. Another limitation regarding animal information would be the “type” of species with respect to VS-specific mission sets. For example, of the 342 dog bites found in this study, it is unknown how many of those bites were from MWDs or other government-owned animals compared to privately owned animals. The type of species causing most animal-related injuries in VS personnel is a key piece of information that needs to be studied in order to effectively focus training on mitigation strategies and policies for improved workplace safety.

No inferences can be made about specific VS billets and their risk (i.e., garrison VS duties vs. lab animal research vs. a field unit). ICD-10 coding contains occupational injury codes that could have been utilized in the inclusion criteria. However, this could have possibly excluded many cases, and that designation did not exist for all ICD-9 codes. Therefore, occupational codes were not used in this analysis and there was no definitive way to determine if the injury was truly occupational in nature. In addition, there may be a significant differential misclassification bias if many more females than males reported animal-related injuries. This bias could result in falsely increasing the strength of association found.

The present study showed that there is an increased risk for diagnosed animal-related injury in females compared to males, young soldiers compared to older, and technicians compared to veterinarians in the VS population. VS leadership should utilize these data to ensure that there are no gender disparities in the training programs for animal care specialists (MOS 68T). Furthermore, leadership should ensure that there are no disparities in the duty assignments of female VS personnel or in the onsite training and task management of new female technicians. Additional research needs to be completed, along with task-specific and MOS-specific military injury data, in order to determine if changes need to be made for the entry requirements of the 68T MOS. Commanders and VCOs should utilize this information to ensure that their technicians, especially young female service members, utilize the appropriate personal protective measures and follow all safety protocols and standard operating procedures in order to mitigate animal-related injury risk.

Acknowledgments: The authors would like to thank Ms. Sorana Raiciulescu and MAJ Craig Calkins for their masterful spreadsheet and statistical support, without which this project would certainly not have been possible.

Author affiliations: U.S. Army Medical Research Institute of Chemical Defense, Veterinary Medicine and Surgery Department (MAJ Messenger); Armed Forces Health Surveillance Branch (Dr. Stahlman); Fort Drum Army Medical Department Activity Chief of Preventive Medicine, Uniformed Services University of the Health Sciences, Department of Preventive Medicine and Biostatistics, Assistant Professor (MAJ Chern).

Disclaimer: The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views, opinions, or policies of Uniformed Services University of the Health Sciences, the Department of Defense, or the Departments of the Army, Navy, or Air Force. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

References

1. Nienhaus A, Skudlik C, Seidler A. Work-related accidents and occupational diseases in veterinarians and their staff. Int Arch Occup Environ Health. 2005;78(3):230–238.

2. Lucas M, Day L, Shirangi A, Fritschi L. Significant injuries in Australian veterinarians and use of safety precautions. Occup Med (Lond). 2009;59(5):327–333.

3. Fowler HN, Holzbauer SM, Smith KE, Scheftel JM. Survey of occupational hazards in Minnesota veterinary practices in 2012. J Am Vet Med Assoc. 2016;248(2):207–218.

4. Fowler H, Adams D, Bonauto D, Rabinowitz P. Work-related injuries to animal care workers, Washington 2007–2011. Am J Ind Med. 2016;59(3):236–244.

5. Barros N, Langley R. Fatal and non-fatal animal-related injuries and illnesses to workers, United States, 2011–2014. Am J Ind Med. 2017;60(9):776–788.

6. Nordgren LD, Gerberich SG, Alexander BH, Church TR, Bender JB, Ryan AD. Evaluation of factors associated with work-related injuries to veterinary technicians certified in Minnesota. J Am Vet Med Assoc. 2014;245(4):425–433.

7. Poole AG, Shane SM, Kearney MT, Rehn W. Survey of occupational hazards in companion animal practices J Am Vet Med Assoc. 1998;212(9):1386–1387.

8. Armed Forces Health Surveillance Center. Animal bites, active and reserve components, U.S. Armed Forces, 2001–2010. MSMR. 2011;18(9):12–15.

9. Williams VF, Taubman SB, Stahlman S. Animal bites and rabies post-exposure prophylaxis, active and reserve components, U.S. Armed Forces, 2011–2018. MSMR. 2019;26(10):13–20.

10. Epp T, Waldner C. Occupational health hazards in veterinary medicine: physical psychological, and chemical hazards. Can Vet J. 2012;53:151–157.

11. Elbers ARW, Blaauw PJ, de Vries M, et al. Veterinary practice and occupational health: an epidemiological study of several professional groups of Dutch veterinarians. Vet Q. 1996;18(4):127–131.

12. Gabel CL, Gerberich SG. Risk factors for injury among veterinarians. Epidemiology. 2002;13(1):80–86.

13. Hafer A, Langley RL, Morrow MWE, Tulis JJ. Occupational hazards reported by swine veterinarians in the United States. Swine Health and Production. 1996;4(3):128–141.

14. Kahan DM, Braman D, Gastil J, Slovic P, Mertz CK. Culture and identity-protective cognition: explaining the white male effect in risk perception. J Empir Leg Stud. 2007;4(3):465–505.

15. Bertakis KD, Azari R, Helms LJ, Callahan EJ, Robbins JA. Gender differences in the utilization of health care services. J Fam Pract. 49(2):147–152.

16. Langley R. Animal bites and stings reported by United States Poison Control Centers 2001–2005. Wilderness Environ Med. 2008;19(1):7–14.

17. Parkin TDH, Brown J, Macdonald EB. Occupational risks of working with horses: a questionnaire aurvey of equine veterinary surgeons. Equine Vet Educ. 2018;30(4):200–205.

18. Reijula K, Rasanen K, Hamalainen M, et al. Work environment and occupational health of Finnish veterinarians. Am J Ind Med. 2003;44(1):46–57.

FIGURE 1. Incident diagnoses and incidence rates of animal-related injury in all VS personnel, by year, U.S. Army, 2001–2018

FIGURE 2. Percentages and counts of animal-related injuries, by type, U.S. Army VS personnel, 2001–2018

TABLE 1. Animal-related injury cases, by demographic and military characteristics, U.S. Army VS personnel, 2001–2018

TABLE 2. Animal-related injury type, by occupation, U.S. Army VS personnel, 2001–2018

TABLE 3. IRRs of animal-related injuries, U.S. Army VS personnel, 2001–2018

You also may be interested in...

MSMR Vol. 29 No. 07 - July 2022

Report
7/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Brief Report: Phase I Results Using the Virtual Pooled Registry Cancer Linkage System (VPR-CLS) for Military Cancer Surveillance

Article
7/1/2022
A patient at Naval Hospital Pensacola prepares to have a low-dose computed tomography test done to screen for lung cancer. Lung cancer is the leading cause of cancer-related deaths among men and women. Early detection can lower the risk of dying from this disease. (U.S. Navy photo by Jason Bortz)

The Armed Forces Health Surveillance Division, as part of its surveillance mission, periodically conducts studies of cancer incidence among U.S. military service members. However, service members are likely lost to follow-up from the Department of Defense cancer registry and Military Health System data sets after leaving service and during periods of time not on active duty.

Recommended Content:

Medical Surveillance Monthly Report

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2021

Article
6/1/2022
Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2021

As in previous years, among service members deployed during 2021, injury/poisoning, musculoskeletal diseases and signs/symptoms accounted for more than half of the total health care burden during deployment. Compared to garrison disease burden, deployed service members had relatively higher proportions of encounters for respiratory infections, skin diseases, and infectious and parasitic diseases. The recent marked increase in the percentage of total medical encounters attributable to the ICD diagnostic category "other" (23.0% in 2017 to 44.4% in 2021) is likely due to increases in diagnostic testing and immunization associated with the response to the COVID-19 pandemic.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2021

Article
6/1/2022
Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2021

In 2021, mental health disorders accounted for the largest proportions of the morbidity and health care burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 and those aged 65 or older, musculoskeletal diseases accounted for the most morbidity and health care burdens. As in previous years, this report documents a substantial majority of non-service member beneficiaries received care for current illness and injury from the Military Health System as outsourced services at non-military medical facilities.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2021

Article
6/1/2022
Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2021

Recommended Content:

Medical Surveillance Monthly Report

Hospitalizations, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
Hospitalizations, Active Component, U.S. Armed Forces, 2021

The hospitalization rate in 2021 was 48.0 per 1,000 person-years (p-yrs), the second lowest rate of the most recent 10 years. For hospitalizations limited to military facilities, the rate in 2021 was the lowest for the entire period. As in prior years, the majority (71.2%) of hospitalizations were associated with diagnoses in the categories of mental health disorders, pregnancy-related conditions, injury/poisoning, and digestive system disorders.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2021

In 2021, as in prior years, the medical conditions associated with the most medical encounters, the largest number of affected service members, and the greatest number of hospital days were in the major categories of injuries, musculoskeletal disorders, and mental health disorders. Despite the pandemic, COVID-19 accounted for less than 2% of total medical encounters and bed days in active component service members.

Recommended Content:

Medical Surveillance Monthly Report

Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

Article
6/1/2022
Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

The proportions of evacuations out of USCENTCOM that were due to battle injuries declined substantially in 2021. For USCENTCOM, evacuations for mental health disorders were the most common, followed by non-battle injury and poisoning, and signs, symptoms, and ill-defined conditions. For USAFRICOM, evacuations for non-battle injury and poisoning were most common, followed by disorders of the digestive system and mental health disorders.

Recommended Content:

Medical Surveillance Monthly Report

Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

In 2021, the overall numbers and rates of active component service member ambulatory care visits were the highest of any of the last 10 years. Most categories of illness and injury showed modest increases in numbers and rates. The proportions of ambulatory care visits that were accomplished via telehealth encounters fell to under 15% in 2021, compared to 19% in 2020.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2021

Article
6/1/2022
Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2021

Recommended Content:

Medical Surveillance Monthly Report

The Association Between Two Bogus Items, Demographics, and Military Characteristics in a 2019 Cross-sectional Survey of U.S. Army Soldiers

Article
5/1/2022
NIANTIC, CT, UNITED STATES 06.16.2022 U.S. Army Staff Sgt. John Young, an information technology specialist assigned to Joint Forces Headquarters, Connecticut Army National Guard, works on a computer at Camp Nett, Niantic, Connecticut, June 16, 2022. Young provided threat intelligence to cyber analysts that were part of his "Blue Team" during Cyber Yankee, a cyber training exercise meant to simulate a real world environment to train mission essential tasks for cyber professionals. (U.S. Army photo by Sgt. Matthew Lucibello)

Data from surveys may be used to make public health decisions at both the installation and the Department of the Army level. This study demonstrates that a vast majority of soldiers were likely sufficiently engaged and answered both bogus items correctly. Future surveys should continue to investigate careless responding to ensure data quality in military populations.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021

Article
5/1/2022
iStock—The castor bean tick (Ixoedes ricinus). Credit: Erik Karits

Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021. Tick-borne encephalitis (TBE) is a viral infection of the central nervous system that is transmitted by the bite of infected ticks, mostly found in wooded habitats in parts of Europe and Asia

Recommended Content:

Medical Surveillance Monthly Report

Evaluation of ICD-10-CM-based Case Definitions of Ambulatory Encounters for COVID-19 Among Department of Defense Health Care Beneficiaries

Article
5/1/2022
SEATTLE, WA, UNITED STATES 04.05.2020 U.S. Army Maj. Neil Alcaria is screened at the Seattle Event Center in Wash., April 5. Soldiers from Fort Carson, Colo., and Joint Base Lewis-McChord, Wash. have established an Army field hospital center at the center in support of the Department of Defense COVID-19 response. U.S. Northern Command, through U.S. Army North, is providing military support to the Federal Emergency Management Agency to help communities in need. (U.S. Army photo by Cpl. Rachel Thicklin)

This is the first evaluation of ICD-10-CM-based cased definitions for COVID-19 surveillance among DOD health care beneficiaries. The 3 case definitions ranged from highly specific to a lower specificity, but improved balance between sensitivity and specificity.

Recommended Content:

Medical Surveillance Monthly Report

Update: Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2013–2021

Article
5/1/2022
This illustration depicts a 3D computer-generated image of a number of drug-resistant Neisseria gonorrhoeae bacteria. CDC/James Archer

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2013–2021. In general, compared to their respective counterparts, younger service members, non-Hispanic Black service members, those who were single and other/unknown marital status, and enlisted service members had higher incidence rates of STIs.

Recommended Content:

Medical Surveillance Monthly Report

Exertional Heat Illness at Fort Benning, GA: Unique Insights from the Army Heat Center

Article
4/1/2022
Navy Petty Officer 3rd Class Ryan Adams is being used as an example victim for cooling a heat casualty at the bi-annual hot weather standard operating procedure training aboard Marine Corps Base Camp Lejeune, N.C., Aug. 24. Adams is demonstrating the "burrito" method used to cool a heat related injury victim. Photo by Pfc. Joshua Grant.

Exertional heat illness (hereafter referred to as heat illness) spans a spectrum from relatively mild conditions such as heat cramps and heat exhaustion, to more serious and potentially life-threatening conditions such as heat injury and exertional heat stroke (hereafter heat stroke).

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 13
Refine your search
Last Updated: August 22, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery