Back to Top Skip to main content

Letter to the Editor: G6PD Deficiency in the Tafenoquine Era

CDC/James Gathany This image shows a female Anopheles funestus mosquito that had landed on a human skin surface and was in the process of obtaining its blood meal. A. funestus is a known vector for the parasitic disease malaria. CDC/James Gathany
This image shows a female Anopheles funestus mosquito that had landed on a human skin surface and was in the process of obtaining its blood meal. A. funestus is a known vector for the parasitic disease malaria.

Recommended Content:

Medical Surveillance Monthly Report

In the December 2019 issue of the MSMR, Lee and Poitras reported a 2.2% prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among active duty U.S. service members between 2004 and 2018.1 Their study utilized Health Level 7-formatted chemistry data archived in the Composite Health Care System (CHCS), but it did not stratify by quantitative or qualitative testing.

When tafenoquine was approved by the U.S. Food and Drug Administration in 2018 for chemoprophylaxis and radical cure of Plasmodium vivax,2 the distinction between quantitative and qualitative testing became clinically significant. Formerly, primaquine was the only approved medication to treat hypnozoites, the dormant form of the parasite in the liver stage of malaria. Its use required a “normal” G6PD activity level, the threshold of which on qualitative tests was usually established at 30%–40%. Tafenoquine, with its longer half-life of 14 days (compared to 6 hours for primaquine), provides a far simpler dosing regimen for malaria chemoprophylaxis and radical cure, but it may precipitate hemolytic anemia at higher levels of G6PD activity. Consequently, the U.S. Centers for Disease Control and Prevention recommends a quantitative G6PD assessment before tafenoquine prescription2 to ensure activity exceeding 70%.3,4

An X-linked genetic disorder, G6PD deficiency in males is usually severe (enzyme activity < 30%), meaning that a “deficient” result on qualitative testing contraindicates the use of both primaquine and tafenoquine. The same is true for females who are homozygous or double heterozygous for mutant alleles—both of which are rare. However, single heterozygous females usually have milder deficiency (enzyme activity 30%–80%),3 meaning they would have a “normal” result on qualitative testing and could safely take primaquine but potentially not tafenoquine.

Univeral G6PD deficiency screening is required across the U.S. Armed Forces, but current policy does not mandate quantitative testing.5 Since tafenoquine may improve medication adherence and thus become a preferable antimalarial option, it is important to understand how many service members have only been qualitatively tested. In the U.S. Air Force, 167,945 active duty members had at least 1 G6PD test performed and recorded in the CHCS between 1 January 2015 and 31 December 2019. Of these, only 4,325 (2.6%), including 1,602 females, had a normal qualitative test with no quantitative result. This low percentage should continue to decrease since quantitative testing is standard protocol for all new recruits at U.S. Air Force basic military training as well as new officer accessions at the U.S. Air Force Academy and Officer Training School (email communication, Maj Dianne Frankel and Lt Col Kevin Baldovich, December 2019 and January 2020, respectively).

While the article by Lee and Poitras provides valuable information, G6PD deficiency surveillance in the tafenoquine era should incorporate quantitative values. These values should also be documented in service members’ deployment readiness records. For example, the Aeromedical Services Information Management System, the U.S. Air Force’s readiness platform, defines G6PD status as either “normal” or “deficient”—essentially as a qualitative test, even if a quantitative enzyme activity level is available in the electronic health record. This may lead to improper prescription of tafenoquine to airmen, particularly females, who are coded as having “normal” G6PD activity levels but whose levels are in fact intermediate.

Author affiliations: Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD (Maj Sayers; Lt Col Webber); Public Health and Preventive Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, OH (Lt Col Webber).

Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Air Force, the Department of Defense, or the U.S. Government.

REFERENCES

1. Lee J, Poitras BT. Prevalence of glucose-6-phosphate dehydrogenase deficiency, U.S. Armed Forces, May 2004–September 2018. MSMR. 2019;26(12):14–17.

2. Haston JC, Hwang J, Tan KR. Guidance for using tafenoquine for prevention and antirelapse therapy for malaria—United States, 2019. MMWR Morb Mortal Wkly Rep. 2019;68(46):1062–1068.

3. Commons RJ, McCarthy JS, Price RN. Tafenoquine for the radical cure and prevention of malaria: the importance of testing for G6PD deficiency. Med J Aust. 2020;212(4):152–153.e1.

4. Price RN, Commons RJ, Battle KE, Thriemer K, Mendis K. Plasmodium vivax in the era of the shrinking P. falciparum map. Trends Parasitol. 2020;36(6):560–570.

5. Defense Health Agency, Department of Defense. Procedural Instruction 6025.14. Active Duty Service Members (ADSM) Erythrocyte Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency and Sickle Cell Trait (SCT) Screening. 6 December 2018.

In reply:

We appreciate the response by Drs. Sayers and Webber to our article published in the December 2019 issue of the MSMR on the prevalence of G6PD deficiency among active duty service members. We are in agreement that quantitative as well as qualitative testing for the genetic condition is imperative to prevent the potentially harmful side effects from the use of the 8-aminoquinoline (8-AQ) class of antimalarial drugs (tafenoquine and primaquine) for malaria chemoprophylaxis and radical cure. We applaud the Air Force for the implementation of quantitative screening of G6PD deficiency among new recruits.

Our article highlights the need for leadership awareness of G6PD deficiency diagnoses to reduce the possibility of adverse events from the use of the 8-AQ class of antimalarial drugs. The inclusion of quantitative G6PD testing is an important tool to further identify at-risk service members.

Respectfully,

MAJ Jangwoo Lee, PhD; Beth Poitras, MPH

You also may be interested in...

Prevalence of Glucose-6-Phosphate Dehydrogenase Deficiency, U.S. Armed Forces, May 2004–September 2018

Article
12/1/2019
Staff Sgt. Cory Gage, 23d Medical Support Squadron medical laboratory technician, places a blood specimen in an automated hematology analyzer, Aug. 29, 2017, at Moody Air Force Base, Ga. Moody’s lab technicians process blood to check for a variety of cell abnormalities from infections to cancer. (U.S. Air Force photo by Airman 1st Class Erick Requadt)

Recommended Content:

Medical Surveillance Monthly Report

Case Report: Hansen’s Disease in an Active Duty Soldier Presenting with Type 1 Reversal Reaction

Article
12/1/2019
Ulcer along the interspace between the patient’s right index and middle fingers. Photograph courtesy of Brooke Army Medical Center Medical Photography.

Recommended Content:

Medical Surveillance Monthly Report

Update: Gallbladder Disease and Cholecystectomies, Active Component, U.S. Armed Forces, 2014–2018

Article
12/1/2019
Hansen's disease nerve

Recommended Content:

Medical Surveillance Monthly Report

Positive Predictive Value of an Algorithm Used for Cancer Surveillance in the U.S. Armed Forces

Article
12/1/2019
Naval Hospital Jacksonville physicians Lt. Catherine Perrault, right, and Lt. Joseph Sapoval review patient charts at the hospital’s labor and delivery unit. Perrault, from Orlando, Florida, rendered aid at the scene of an accident involving a train and a school bus on Sept. 27, 2018. Perrault recently returned from a deployment to the Middle East where she served as the general medical officer aboard the amphibious assault ship USS Iwo Jima (LPH 2). During the deployment, she provided routine, acute, and critical care. (U.S. Navy photo by Jacob Sippel/Released)

Recommended Content:

Medical Surveillance Monthly Report

Case Report: Tick-borne Encephalitis Virus Infection in Beneficiaries of the U.S. Military Healthcare System in Southern Germany

Article
11/1/2019
A paratrooper with 1st Squadron, 91st Cavalry Regiment, 173rd Airborne Brigade lies concealed in a forest and observes his target during a combined sniper exercise with the British Army's 1st Battalion, Royal Irish Regiment as part of Exercise Wessex Storm at the 7th Army Joint Multinational Training Command's Grafenwoehr Training Area, Germany, July 30, 2015. Wessex Storm is an annual maneuver exercise for British forces, integrating NATO allies and partners. (U.S. Army photo by Visual Information Specialist Gertrud Zach/released)

Recommended Content:

Medical Surveillance Monthly Report

Tick-borne encephalitis surveillance in U.S. military service members and beneficiaries, 2006–2018

Article
11/1/2019
©ECDC/Photo by Guy Hendrickx

Recommended Content:

Medical Surveillance Monthly Report

Editorial: Mitigating the Risk of Disease From Tick-borne Encephalitis in U.S. Military Populations

Article
11/1/2019
Female Ixodes ricinus Tick ©ECDC/Photo by Francis Schaffner

Recommended Content:

Medical Surveillance Monthly Report

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2014–June 2019

Article
11/1/2019
A U.S. Marine with Marine Rotational Force-Europe (MRF-E) 19.1 maintains a defensive security position during Exercise Winter Warrior in Haltdalen, Norway, Dec. 5, 2018. The three-week exercise tested the Marines' abilities to adapt to harsh weather conditions, move across long distances in the snow and push themselves to complete the mission despite austere situations. (U.S. Marine Corps photo by Cpl. Elijah Abernathy/Released)

Recommended Content:

Medical Surveillance Monthly Report

Animal Bites and Rabies Post-exposure Prophylaxis, Active and Reserve Components, U.S. Armed Forces, 2011–2018.

Article
10/1/2019
Big Brown Bat stock photo (iStock.com)

Animal Bites and Rabies Post-exposure Prophylaxis, Active and Reserve Components, U.S. Armed Forces, 2011–2018

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Trends in Opioid Prescription Fills Among U.S. Military Service Members During Fiscal Years 2007–2017

Article
10/1/2019
U.S. Air Force Tech Sgt. Ryan Marr, 18th Medical Group pharmacy craftsman, processes prescriptions, June 8, 2018, at Kadena Air Base, Japan. The pharmacy processes and fills prescriptions for hundreds of different medical needs. (U.S. Air Force photo by Staff Sergeant Jessica H. Smith) Merriam/Released)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2014–April 2019

Article
10/1/2019
181129-N-GR847-3000 ARABIAN GULF (Nov. 29, 2018) Hospitalman Jay Meadows, from Weaver, Ala., administers an influenza vaccine to a Sailor during a regularly scheduled deployment of the Essex Amphibious Ready Group (ARG) and 13th Marine Expeditionary Unit (MEU). The Essex ARG/13th MEU is flexible and persistent Navy-Marine Corps team deployed to the U.S. 5th Fleet area of operations in support of naval operations to ensure maritime stability and security in the Central Region, connecting to the Mediterranean and the Pacific through the western Indian Ocean and three strategic choke points. (U.S. Navy photo by Mass Communication Specialist 3rd Class Reymundo A. Villegas III)

Recommended Content:

Medical Surveillance Monthly Report

Measles, Mumps, Rubella, and Varicella Among Service Members and Other Beneficiaries of the Military Health System, 1 January 2016–30 June 2019

Article
10/1/2019
U.S. Air Force Airmen of the 163d Attack Wing line up to  receive a flu vaccine at March Air Reserve Base, California, Nov. 4, 2018. The flu vaccine is an annual requirement for military members to help curb the spread of the flu and limit its impact within the unit. (U.S. Air National Guard photo by Tech. Sgt. Julianne M. Showalter)

Recommended Content:

Medical Surveillance Monthly Report

Incident and Recurrent Cases of Central Serous Chorioretinopathy, Active Component, U.S. Armed Forces, 2001–2018

Article
9/1/2019
A phoropter is an instrument used to determine an individual’s eyeglass prescription by measuring the eye’s refractive error and switching through various lens until the persons vision is normal. (U.S. Air Force photo by Airman Dennis Spain)

Recommended Content:

Medical Surveillance Monthly Report

Editorial: The Department of Defense/Veterans Affairs Vision Center of Excellence

Article
9/1/2019
U.S. Army Spc. Angel Gomez, right, assigned to Charlie Company, 173rd Brigade Support Battalion, wraps the eye of a fellow Soldier with a simulated injury, for a training exercise as part of exercise Saber Junction 16 at the U.S. Army’s Joint Multinational Readiness Center in Hohenfels, Germany, April 5, 2016. Saber Junction is a U.S. Army Europe-led exercise designed to prepare U.S., NATO and international partner forces for unified land operations. The exercise was conducted March 31-April 24. (U.S. Army photo by Pfc. Joshua Morris)

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Ocular and Vision-Related Conditions, Active Component, U.S. Armed Forces, 2018

Article
9/1/2019
Senior Airman Breanna Daniels, 559th Medical Group optometry technician, takes images of Tech. Sgt. Stephanie Edmiston, 559th MDG trainee health flight chief, during an eye exam Oct. 19 at the Reid Clinic on Joint Base San Antonio-Lackland, Texas. The 559th MDG is home to the largest optometry and public health flight in the Department of Defense; the DOD's first military training consultation service. (U.S. Air Force photo/Staff Sgt. Kevin Iinuma)

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 61 - 75 Page 5 of 13

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.