Skip to main content

Military Health System

Department of Defense Mid-Season Vaccine Effectiveness Estimates for the 2019– 2020 Influenza Season

Image of 201019-N-PC065-1062 NORFOLK (Oct. 19, 2020) Hospital Corpsman 2nd Class Sashee Robinson, assigned to amphibious transport dock ship USS Arlington (LPD 24), administers an influenza vaccine to Machinery Repairman 2nd Class Hannah Swearingen in medical aboard the Arlington. Influenza vaccines are an annual medical readiness requirement throughout the Department of Defense. (U.S. Navy photo by Mass Communication Specialist 2nd Class John Bellino/Released). Hospital Corpsman 2nd Class Sashee Robinson, assigned to amphibious transport dock ship USS Arlington (LPD 24), administers an influenza vaccine to Machinery Repairman 2nd Class Hannah Swearingen in medical aboard the Arlington. Influenza vaccines are an annual medical readiness requirement throughout the Department of Defense. (U.S. Navy photo by Mass Communication Specialist 2nd Class John Bellino)

Recommended Content:

Medical Surveillance Monthly Report

What Are the Findings?

The 2019-2020 influenza vaccine provided moderate protection against influenza for beneficiary and civilian populations within the Department of Defense (DOD) and low to moderate protection against influenza for active component service members.

What Is the Impact on Readiness and Force Health Protection?

Components of the influenza vaccine can change each season and novel influenza strains can appear and circulate among active component and DOD beneficiary populations. Conducting Vaccine Effectiveness (VE) studies every year can assist vaccine policy makers in making their decisions on strain selection for the influenza vaccine for the subsequent season, thus creating the most effective influenza vaccine, which can reduce morbidity and improve military readiness.

Abstract

This report provides mid-season VE estimates from the Armed Forces Health Surveillance Division (AFHSD), the DOD Global Respiratory Pathogen Surveillance (DODGRS) program, and the Naval Health Research Center (NHRC) for the 2019-2020 influenza season. Using a test negative case-control study design, the AFHSD performed a VE analysis for active component service members while the DODGRS program and NHRC collaborated to perform a VE analysis for DOD beneficiaries and U.S.-Mexico border civilians. Among active component service members, there was low to moderate protection against influenza B, moderate protection against A(H3N2), and non-statistically significant low protection against influenza A overall and A(H1N1). Among DOD beneficiaries and U.S.-Mexico border civilians, there was statistically significant moderate protection against influenza B, influenza A overall, A(H1N1), and A(H3N2).

Background

Historically, military populations have been stationed in congregate settings that predispose them to acute respiratory infections, resulting in significantly increased morbidity, which has impacted military readiness.1 In previous seasons, it was estimated that 300,000 to 400,000 active component service members had medical encounters for respiratory infections.2 Specifically, influenza has had a significant impact on the military population for over a century. During the influenza pandemic of 1918, 43,000 U.S. service members were killed due to the H1N1 pandemic strain that was circulating at the time, constituting approximately 40% of all U.S. war deaths during World War I.3 On a yearly basis, the U.S. military requires influenza vaccination among active component personnel, with a goal of exceeding 90% immunization by mid-Dec. of each year.2

Despite the high vaccination rate among the military population, vaccine breakthrough cases still occur. From 2007 through 2012, the Armed Forces Health Surveillance Division (AFHSD) reported 7,000–25,000 cases of influenza infections to the Military Health System each week of the influenza seasons, 3,000 to 16,000 of which were military personnel.2,4,5 The Department of Defense conducts year-round influenza surveillance for military health beneficiaries and civilian populations, and the DOD uses these data to estimate midseason influenza VE, which is submitted annually to the Food and Drug Administration Vaccine and Related Biological Advisory Committee meeting. This report presents the mid-season VE estimates from the DOD 2019–2020 influenza season surveillance.

Methods

Two separate analyses were performed to produce mid-season DOD VE estimates, both using a test-negative, case-control study design. The study population for the AFHSD analysis consisted of active component service members from the Army, Air Force, Navy, and Marine Corps stationed in the U.S. and abroad who were tested for influenza. Subjects were identified using the Defense Medical Surveillance System Health Level 7 data from the Navy and Marine Corps Public Health Center, and service member data from the Naval Health Research Center (NHRC) for specimens collected for influenza testing from 1 Nov. 2019 to 15 Feb. 2020. The AFHSD identified cases by either a positive reverse transcription polymerase chain reaction (RT-PCR), viral culture, or rapid test. Cases were laboratory-confirmed influenza positives and controls were influenza test negatives. Active component service members with a negative rapid test were excluded. Influenza vaccination status was ascertained through documentation in medical records. Subjects were considered vaccinated if the laboratory specimens were collected 14 days or more after vaccination. Crude and adjusted VE estimates were calculated using odds ratios (ORs) and 95% confidence intervals (CIs) obtained from multivariable logistic regression models. VE estimates were adjusted for sex, age category, and month of specimen collection. VE was calculated as (1−OR) × 100. Results were stratified by influenza subtype. Due to differences in the timing of circulating influenza strains this season, the influenza B and influenza A(H3N2) analyses used specimens from the entire period of 1 Nov. 2019 to 15 Feb. 2020, whereas the influenza A overall and influenza A(H1N1) analyses were restricted to the peak influenza A circulation period of 1 Jan. 2020 to 15 Feb. 2020. Influenza A(H3N2) cases were few and sporadic throughout the season, which is why the entire period was used. All vaccinated populations were restricted to subjects who received inactivated influenza vaccine because the live attenuated influenza vaccine was not routinely used among active component service members during the 2019–2020 season.

The DOD Global Respiratory Pathogen Surveillance (DODGRS) program and NHRC combined their surveillance data to estimate VE among DOD beneficiaries and civilians whose specimens were collected from 3 Nov. 2019 to 15 Feb. 2020. Active component members were excluded from this analysis. Data from the DODGRS program pertained to DOD dependents who visited military treatment facilities and whose specimens were sent to and tested at the U.S. Air Force School of Aerospace Medicine (USAFSAM). NHRC's data pertained to civilian populations who visited clinics near the U.S.-Mexico border and outpatient DOD beneficiaries in Southern California and Illinois. Cases were patients whose laboratory tests confirmed the presence of influenza virus, and controls were patients whose influenza tests were negative. Cases and controls were identified by RT-PCR and/or viral culture. Vaccination status was determined through electronic immunization records from the Air Force Complete Immunization Tracking Application or self-report from questionnaires. Individuals were considered vaccinated if they received the vaccine at least 14 days prior to their specimen collection date. Those whose vaccination status could not be ascertained or those who were vaccinated within 14 days prior to their illness were excluded. Crude and adjusted VE estimates for this analysis were also calculated using ORs and 95% CIs obtained from multivariable logistic regression models. VE estimates were adjusted for age group, time of specimen collection, location, and sex. VE was calculated as (1−OR) × 100. Results were stratified by influenza subtype and population (all dependents, aged 2-17 years, and aged 18 years or older) (Table 1). Because of insufficient data, a sub-analysis for the elderly population (aged 65 years or older) was not possible.

Results

For AFHSD's active component service member influenza B and A(H3N2) analysis (Nov. to Feb.), there were 2,033 and 37 laboratory-confirmed cases of influenza B and A(H3N2), respectively, and 4,982 test-negative controls. For AFHSD's active component service member influenza A (any subtype) and A(H1N1) analysis (Jan. to Feb.), there were 1,911 and 347 laboratory-confirmed cases of influenza A (any subtype) and A(H1N1), respectively, and 2,222 test-negative controls. Although the crude VE estimate for influenza B was not statistically significantly different from zero, the adjusted VE estimate was statistically significant at 31%. The crude and adjusted VE estimates for influenza A(H3N2) were statistically significant at 49% and 58%, respectively. The adjusted VE estimates for influenza A (any subtype) and A(H1N1) did not reach statistical significance at 12% and 28%, respectively. The confidence intervals for crude and adjusted VE estimates are shown in the Table.

For the USAFSAM/NHRC DOD beneficiary and civilian analysis, there were 1,595 confirmed cases and 2,150 controls. With the exception of influenza A(H3N2) in adults, all adjusted VE estimates were statistically significantly different from zero. Moreover, the VE estimates were substantially higher for influenza B (unadjusted and adjusted) and influenza A(H3N2) (adjusted) than for influenza A(H1N1) and all influenza A subtypes.

Editorial Comment

Among active component service members, the mid-season 2019–2020 estimates of influenza vaccine effectiveness indicated moderate protection against A(H3N2) (58%), low to moderate protection against influenza B (31%), and non-statistically significant low protection against influenza A overall (12%) and A(H1N1) (28%). Estimates for the DOD beneficiaries and civilian population indicate a statistically significant moderate protection against overall influenza diagnosis (54%), influenza B (51%), influenza A (any subtype) (45%), A(H1N1) (42%), and A(H3N2) (60%). Mid-season VE estimates for active component service members were higher and statistically significant compared with the previous season.7 This could potentially be due to the 2019–2020 season being more severe and having a higher volume of testing, which resulted in a larger sample size and improved statistical power of the analyses. VE estimates for the DOD beneficiaries and civilian populations were similar to interim estimates from the Centers for Disease Control and Prevention's VE analysis for the 2019–2020 influenza season.8

There were limitations to these analyses. Results for the active component service member analysis are for medically attended illnesses that were tested for influenza; therefore, the result may not be applicable to less severe illnesses that did not result in a medical encounter for the 2019– 2020 influenza season. Among the active component service member population, influenza vaccination is mandatory, so this population is highly immunized. This could have a negative impact on VE, with potential statistical issues and biological effects such as attenuated immune response with repeated exposures. The DOD beneficiaries and civilians analysis was unable to calculate VE estimates for the elderly population due to insufficient data. Additionally, self-reported data from the questionnaire could result in potential recall bias on the analysis. However, this bias was curtailed for self-reported vaccination status by excluding those whose status could not be ascertained and electronic immunization records were used instead, if available.

Because of the rapidly changing nature of the influenza virus, it is imperative for researchers to continue to assess the effectiveness of the influenza vaccine, as well as to enhance methods of VE analyses for more accurate estimates, and to take waning immunity and repeated vaccinations into account. Future research on these concepts could bring forth benefits and have an influence on decision-making for vaccination policies, especially for the military.

Author affiliations: STS Systems Integration, LLC, San Antonio, TX (Mr. Thervil, Ms. DeMarcus); Wright-Patterson Air Force Base-Air Force satellite, U.S. Air Force School of Aerospace Medicine, Ohio (Mr. Thervil, Ms. DeMarcus); Cherokee Nation Strategic Solutions, Tulsa, OK (Dr. Cost, Ms. Hu); Defense Health Agency, Armed Forces Health Surveillance Division, Silver Spring, MD (Dr. Cost, Ms. Hu); Naval Health Research Center, San Diego, CA (Dr. Myers, Dr. Hollis, Ms. Balansay-Ames, Ms. Ellis, Dr. Christy); General Dynamics Information Technology, San Diego, CA (Ms. Balansay-Ames, Ms. Ellis).

Disclaimer: The authors are military service members or employees of the U.S. Government. This work was prepared as part of their official duties. Title 17, U.S.C. §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17, U.S.C. §101 defines a U.S. Government work as work prepared by a military service member or employee of the U.S. Government as part of that person's official duties. Report No. 21-21 was supported by Global Emerging Infections Surveillance & Response System Operations (GEIS) under work unit nos. 60501 and GEIS Promis ID P0151_20_US_01. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government.

References

  1. Ho ZJM, Hwang YFJ, Lee JMV. Emerging and re-emerging infectious diseases: challenges and opportunities for militaries. Mil Med Res. 2014;1:21.
  2. Sanchez JL, Cooper MJ, Myers CA, et al. Respiratory infections in the U.S. military: recent experience and control. Clin Microbiol Rev. 2015;28(3):743-800.
  3. Clarke T Jr. Pandemic, 1918. Mil Med. 2016; 81(8):941-942.
  4. Sanchez JL, Cooper MJ. Influenza in the US military: an overview. J Infect Dis Treat. 2016;2:1.
  5. Update: pneumonia-influenza and severe acute respiratory illnesses, active component, U.S. Armed Forces, July 2000-June 2012. MSMR. 2012;19:11-13.
  6. Toure E, Eick-Cost AA, Hawksworth AW, et al. Brief report: mid-season influenza vaccine effectiveness estimates for the 2016-2017 influenza season. MSMR. 2017;24(8):17-19.
  7. Lynch LC, Coleman R, DeMarcus L, et al. Brief report: Department of Defense midseason estimates of vaccine effectiveness for the 2018-2019 influenza season. MSMR. 2019;26(7):24–27. 
  8. Dawood FS, Chung JR, Kim SS, et al. Interim estimates of 2019–20 seasonal influenza vaccine effectiveness—United States, Feb. 2020. MMWR Morb Mortal Wkly Rep. 2020;69:177-182.

TABLE. Mid-season crude and adjusted influenza VE estimates, by influenza subtype and population, 2019–2020 influenza season

You also may be interested in...

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke diagnoses were highest among males and service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. Subgroup-specific incidence rates of heat exhaustion diagnoses in 2018 were notably higher among service members less than 20 years old, Asian/Pacific Islanders, Army and Marine Corps members, recruit trainees, and service members in combat-specific occupations. During 2014–2018, a total of 325 heat illnesses were documented among service members in Iraq and Afghanistan; 8.6% (n=28) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

Recommended Content:

Medical Surveillance Monthly Report

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Recommended Content:

Medical Surveillance Monthly Report

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image.

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During Aug.–Sept. 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 Aug.–11 Sept. 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing's syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness & Combat Support

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report
<< < ... 11 12 13 14 > >> 
Showing results 181 - 195 Page 13 of 14
Refine your search
Last Updated: October 18, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery