Skip to main content

Military Health System

Test of Sitewide Banner

This is a test of the sitewide banner capability. In the case of an emergency, site visitors would be able to visit the news page for addition information.

Brief Report: Prevalence of Screening Positive for Post-Traumatic Stress Disorder Among Service Members Following Combat-Related Injury

Image of 2 Prevalence of PTSD. U.S. Army Sgt. Arne F. Eastlund of the California Army National Guard’s 49th Military Police Brigade was nearly killed in 2005 in Baghdad, Iraq, during Operation Iraqi Freedom. An improvised explosive device destroyed his military vehicle and killed comrade Sgt. 1st Class Isaac S. Lawson. Eastlund survived and has continued serving Cal Guard even as a retired war veteran. (U.S. Army National Guard photo provided by Arne Eastlund)

Background

The post-9/11 conflicts in Iraq and Afghanistan resulted in the most U.S. military casualties since Vietnam.1 Asymmetric warfare dominated the battlefield, commonly in the form of improvised explosive devices and other blast weaponry, which placed infantry and combat support personnel at risk of injury.2 As casualty numbers increased during these conflicts, so too did the survivability rate relative to previous wars, most notably due to advances in personal protective equipment and field medical care.3 This led to a shift in resources towards long-term rehabilitation of wounded service members to ameliorate physical and mental health sequelae.2,4

Post-traumatic stress disorder (PTSD) is frequently reported among military personnel, particularly those with combat-related injury.5,6 Koren et al.5 hypothesized multiple etiologies for the relationship between combat-related injury and PTSD, including increased levels of perceived threat to life and peritraumatic dissociation (i.e., feeling emotionally numb or separated from a traumatic event) among injured relative to non-injured personnel. An increased incidence of PTSD is associated with physical problems and chronic health conditions after combat-related injury.7,8 Moreover, assessment of PTSD following combat-related injury is essential for planning appropriate treatment protocols and improving long-term well-being.4,9

This report describes the prevalence of screening positive for PTSD and the association with injury severity and time since injury among U.S. military personnel injured during combat operations.

Methods

Data were collected from the Wounded Warrior Recovery Project (WWRP), a longitudinal examination of patient-reported outcomes among service members injured on deployment in post-9/11 conflicts.10 Participants in the WWRP are identified from the Expeditionary Medical Encounter Database (EMED), a deployment health repository maintained by the Naval Health Research Center that includes clinical records of service members injured during overseas contingency operations since 2001. Records are collected throughout the continuum of care (i.e., from point of injury through rehabilitation).11 Individuals who sustained an injury during combat operations after 1 September 2001 are eligible for the WWRP and approached via postal mail and email to provide informed consent to complete biannual assessments for 15 years. Recruitment for the WWRP began in November 2012 and is ongoing.

The present study utilized cross-sectional data for 3,847 WWRP participants collected between September 2018 and April 2020. WWRP measures and procedures were updated in late 2018 to remain consistent with current standards of measurement. Specifically, the PTSD screening instrument was updated to the PTSD Checklist for the DSM-5 (PCL-5).12 The PCL-5 shows good psychometric properties and has been used with military samples.13,14 Scores on the PCL-5 were summed to create a total symptom severity score. A standard cutoff of 33 indicated a positive screen for PTSD. Injury dates, Injury Severity Scores (ISS), and demographics for this study were obtained from the EMED. The ISS is a composite measure of overall injury severity that accounts for multiple injuries to different body regions.15 Prevalence of screening positive for PTSD was calculated and stratified by ISS (mild [ISS 1–3], moderate [ISS 4–8], or serious/severe [ISS 9+]) and time between injury and WWRP assessment in quartiles (0.4–7.3, 7.4–10.7, 10.8–13.0, or 13.1–17.8 years). Chi-square tests assessed differences by PTSD screening status. An alpha level of 0.05 was considered statistically significant. Analyses were performed in SAS/STAT software, version 9.4 (SAS Institute, Cary, NC).

Results

The study population consisted mostly of young (<30 years old), non-Hispanic White, and male service members in the Army with mild ISSs (Table). Missing data were observed for sex (n = 4), race/ethnicity group (n = 325), and rank (n = 21). Approximately half completed a WWRP assessment more than 10.8 years after injury, and 38.7% screened positive for PTSD. Service members who screened positive for PTSD were more likely to be non-White (p <.001), non-Army (p <.001), and lower- to midlevel-enlisted (E1–E6; p <.001) with mild or moderate ISSs (p =.001).

Overall, the proportions of service members who screened positive for PTSD increased by time since injury quartile (Figure); 35.9% of participants who completed an assessment 0.4–7.3 years after injury screened positive for PTSD, compared with 41.4% who completed the assessment 13.1–17.8 years after injury. Participants with serious/severe injuries had the lowest prevalence of screening positive for PTSD in all time since injury quartiles (30.8–38.0%), while those with moderate injuries had the highest prevalence in the final 2 quartiles (44.5%).

Editorial Comment

Approximately 39% of WWRP participants screened positive for PTSD, which is higher than the 28% identified in a previous study using the same instrument among military personnel with high combat exposure.14 Another study among Marines and Soldiers returning from deployment identified 12–13% PTSD positive using a 4-item PTSD screening instrument.16 In the present study, all service members had at least 1 potentially traumatic event (i.e., combat-related injury), which could explain the higher prevalence of participants who screened positive for PTSD relative to other studies.

The finding of increasing prevalence by time since injury suggests that PTSD may develop or persist several years after combat-related injury, and underscores the need for continual assessment. The higher prevalence of screening positive for PTSD in participants with mild or moderate combat-related injuries suggests that PTSD symptoms in these individuals may not have been as promptly or readily identified and treated as in those with serious/severe injuries. Further, service members with serious/severe injuries likely received more extensive care for physical ailments and may have been regularly assessed for mental health symptoms leading to earlier identification, treatment, and resolution. Other aspects of serious/severe combat-related injuries, such as medications received during treatment in-theater, could also explain lower PTSD prevalence in this group.17

The results of this study highlight the importance of screening for PTSD after combat-related injury even after long periods of time. Both the Post-Deployment Health Assessment and Periodic Health Assessment should continue to be used to identify and refer individuals at risk for PTSD. Given that service members may be averse to reporting mental health symptoms due to non-anonymity of these assessments,18 programs aimed at reducing the stigma associated with mental health care in the military should be prioritized.19 In addition, medical providers who treat combat-related injuries should routinely screen service members for mental health concerns, as individuals presenting for physical health complaints may be simultaneously experiencing psychological symptoms.20

There are some limitations that should be considered when interpreting the results of this study. This analysis examined time since injury in mutually exclusive groups, rather than repeated measures within individuals, and thus trajectory of PTSD over time could not be elucidated. Similarly, the WWRP does not collect information related to history of PTSD prior to injury. Further, the specific role of injury on the development of PTSD cannot be clarified without a detailed accounting of other factors (e.g., physical health, comorbidities, and life stressors) following combat-related injury.

In conclusion, service members and veterans with combat-related injuries are at risk of screening positive for PTSD even more than a decade after injury. This warrants future research to explore the role of injury severity and factors associated with resiliency, persistence, and recovery. Resources should be prioritized for early intervention and mitigation in this population during active service and post-military discharge.

Author Affiliations: Naval Health Research Center, San Diego, CA (Dr. MacGregor, Ms. Perez, Dr. McCabe, Ms. Dougherty, Dr. Jurick, and Mr. Galarneau); Axiom Resource Management Inc., San Diego, CA (Dr. MacGregor); Leidos, Inc., San Diego, CA (Ms. Perez, Dr. McCabe, Ms. Dougherty, Dr. Jurick)

Disclaimer: The authors are military service members or employees of the U.S. Government. This work was prepared as part of their official duties. Title 17, U.S.C. §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17, U.S.C. §101 defines a U.S. Government work as work prepared by a military service member or employee of the U.S. Government as part of that person's official duties. This report was supported by the U.S. Navy Bureau of Medicine and Surgery under work unit no. 60808. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government. The study protocol was approved by the Naval Health Research Center Institutional Review Board in compliance with all applicable Federal regulations governing the protection of human subjects. Research data were derived from an approved Naval Health Research Center Institutional Review Board protocol, number NHRC.2009.0014.

References

  1. DeBruyne NF, Leland A; Congressional Research Service. American war and military operations casualties: lists and statistics. Accessed 1 June 2021. https://fas.org/sgp/crs/natsec/RL32492.pdf
  2. Greer N, Sayer N, Kramer M, Koeller E, Velasquez T. Prevalence and epidemiology of combat blast injuries from the military cohort 2001–2014. Washington, DC: Department of Veterans Affairs; 2016.
  3. Cannon JW, Holena DN, Geng Z, et al. Comprehensive analysis of combat casualty outcomes in US service members from the beginning of World War II to the end of Operation Enduring Freedom. J Trauma Acute Care Surg. 2020;89(Suppl 2):S8–S15.
  4. Sayer NA, Cifu DX, McNamee S, et al. Rehabilitation needs of combat-injured service members admitted to the VA Polytrauma Rehabilitation Centers: the role of PM&R in the care of wounded warriors. PM R. 2009;1(1):23–28.
  5. Koren D, Norman D, Cohen A, Berman J, Klein EM. Increased PTSD risk with combat-related injury: a matched comparison study of injured and uninjured soldiers experiencing the same combat events. Am J Psychiatry. 2005;162(2):276–282.
  6. Walker LE, Watrous J, Poltavskiy E, et al. Longitudinal mental health outcomes of combat-injured service members. Brain Behav. 2021;11(5):e02088.
  7. Grieger TA, Cozza SJ, Ursano RJ, et al. Posttraumatic stress disorder and depression in battle-injured soldiers. Am J Psychiatry. 2006;163(10):1777–1783.
  8. Watrous JR, McCabe CT, Jones G, et al. Low back pain, mental health symptoms, and quality of life among injured service members. Health Psychol. 2020;39(7):549–557.
  9. Woodruff SI, Galarneau MR, McCabe CT, Sack DI, Clouser MC. Health-related quality of life among US military personnel injured in combat: findings from the Wounded Warrior Recovery Project. Qual Life Res. 2018;27(5):1393–1402.
  10. Watrous JR, Dougherty AL, McCabe CT, Sack DI, Galarneau MR. The Wounded Warrior Recovery Project: a longitudinal examination of patient-reported outcomes among deployment-injured military personnel. Mil Med. 2019;184(3–4):84–89.
  11. Galarneau MR, Hancock WC, Konoske P, et al. The Navy-Marine Corps Combat Trauma Registry. Mil Med. 2006;171(8):691–697.
  12. Weathers FW, Litz BT, Keane TM, Palmieri PA, Marx BP, Schnurr PP. The PTSD Checklist for DSM-5 (PCL-5) – Standard [Measurement instrument]. National Center for PTSD Web site. Accessed 1 June 2021. https://www.ptsd.va.gov/professional/assessment/documents/PCL5_Standard_form.PDF
  13. Blevins CA, Weathers FW, Davis MT, Witte TK, Domino JL. The posttraumatic stress disorder checklist for DSM-5 (PCL-5): development and initial psychometric evaluation. J Trauma Stress. 2015;28(6):489–498.
  14. Hoge CW, Riviere LA, Wilk JE, Herrell RK, Weathers FW. The prevalence of post-traumatic stress disorder (PTSD) in US combat soldiers: a head-to-head comparison of DSM-5 versus DSM-IV-TR symptom criteria with the PTSD checklist. Lancet Psychiatry. 2014;1(4):269–277.
  15. Baker SP, O'Neill B, Haddon W Jr, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.
  16. Mustillo SA, Kysar-Moon A, Douglas SR, et al. Overview of depression, post-traumatic stress disorder, and alcohol misuse among active duty service members returning from Iraq and Afghanistan, self-report and diagnosis. Mil Med. 2015;180(4):419–27.
  17. Holbrook TL, Galarneau MR, Dye JL, Quinn K, Dougherty AL. Morphine use after combat injury in Iraq and post-traumatic stress disorder. N Engl J Med. 2010;362(2):110–117.
  18. Warner CH, Appenzeller GN, Grieger T, et al. Importance of anonymity to encourage honest reporting in mental health screening after combat deployment. Arch Gen Psychiatry. 2011;68(10):1065–1071.
  19. Ben-Zeev D, Corrigan PW, Britt TW, Langford L. Stigma of mental illness and service use in the military. J Ment Health. 2012;21(3):264–273.
  20. MacGregor AJ, Zouris JM, Watrous JR, et al. Multimorbidity and quality of life after blast-related injury among US military personnel: a cluster analysis of retrospective data. BMC Public Health. 2020;20(1):578.

FIGURE. Prevalence of screening positive for post-traumatic stress disorder (PTSD)a by Injury Severity Score (ISS) and time since injury, Wounded Warrior Recovery Project participants, September 2018–April 2020

TABLE. Demographic, military, and injury characteristics of Wounded Warrior Recovery Project participants, by post-traumatic stress disorder (PTSD) screening outcome,a September 2018–April 2020

You also may be interested in...

Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022
3_ambulatory visits

In 2021, the overall numbers and rates of active component service member ambulatory care visits were the highest of any of the last 10 years. Most categories of illness and injury showed modest increases in numbers and rates. The proportions of ambulatory care visits that were accomplished via telehealth encounters fell to under 15% in 2021, compared to 19% in 2020.

Surveillance snapshot: Illness and injury burdens, recruit trainees, U.S. Armed Forces, 2021

Article
6/1/2022
recruit snapshot

The Association Between Two Bogus Items, Demographics, and Military Characteristics in a 2019 Cross-sectional Survey of U.S. Army Soldiers

Article
5/1/2022
Cover 3

Data from surveys may be used to make public health decisions at both the installation and the Department of the Army level. This study demonstrates that a vast majority of soldiers were likely sufficiently engaged and answered both bogus items correctly. Future surveys should continue to investigate careless responding to ensure data quality in military populations.

Surveillance Snapshot: Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021

Article
5/1/2022
Cover 4

Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021. Tick-borne encephalitis (TBE) is a viral infection of the central nervous system that is transmitted by the bite of infected ticks, mostly found in wooded habitats in parts of Europe and Asia

Evaluation of ICD-10-CM-based Case Definitions of Ambulatory Encounters for COVID-19 Among Department of Defense Health Care Beneficiaries

Article
5/1/2022
Cover 2

This is the first evaluation of ICD-10-CM-based cased definitions for COVID-19 surveillance among DOD health care beneficiaries. The 3 case definitions ranged from highly specific to a lower specificity, but improved balance between sensitivity and specificity.

Update: Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2013–2021

Article
5/1/2022
Cover 1

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2013–2021. In general, compared to their respective counterparts, younger service members, non-Hispanic Black service members, those who were single and other/unknown marital status, and enlisted service members had higher incidence rates of STIs.

Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2006–2021

Article
4/1/2022
Cover 4

Exertional (or exercise-associated) hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 mEq/L) that develops during or up to 24 hours following prolonged physical activity. Acute hyponatremia creates an osmotic imbalance between fluids outside and inside of cells.

Exertional Heat Illness at Fort Benning, GA: Unique Insights from the Army Heat Center

Article
4/1/2022
Cover 1

Exertional heat illness (hereafter referred to as heat illness) spans a spectrum from relatively mild conditions such as heat cramps and heat exhaustion, to more serious and potentially life-threatening conditions such as heat injury and exertional heat stroke (hereafter heat stroke).

Heat Illness, Active Component, U.S. Armed Forces, 2021

Article
4/1/2022
Cover 2

From 2020 to 2021, the rate of incident heat stroke was relatively stable while the rate of heat exhaustion increased slightly

Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2017–2021

Article
4/1/2022
Cover 3

Exertional rhabdomyolysis is a potentially serious condition that requires a vigilant and aggressive approach. Some service members who experience exertional rhabdomyolysis may be at risk for recurrences, which may limit their military effectiveness and potentially predispose them to serious injury.

Brief report: Using syndromic surveillance to monitor MIS-C associated with COVID-19 in Military Health System beneficiaries

Article
3/1/2022
Cover 4

SARS CoV-2 and the illness it causes, COVID-19, have exacted a heavy toll on the global community. Most of the identified disease has been in the elderly and adults. The goal of this analysis was to ascertain if user-built ESSENCE queries applied to records of outpatient MHS health care encounters are capable of detecting MIS-C cases that have not been identified or reported by local public health departments.

Surveillance Snapshot: Medical Separation from Service Among Incident Cases of Osteoarthritis and Spondylosis, Active Component, U.S. Armed Forces, 2016–2020

Article
3/1/2022
Cover 5

Osteoarthritis (OA) is the most common adult joint disease and predominantly involves the weight-bearing joints. This condition, including spondylosis (OA of the spine), results in significant disability and resource utilization and is a leading cause of medical separation from military service.

Obesity prevalence among active component service members prior to and during the COVID-19 pandemic, January 2018–July 2021

Article
3/1/2022
Cover 2

This study examined monthly prevalence of obesity and exercise in active component U.S. military members prior to and during the COVID-19 pandemic. These results suggest that the COVID-19 pandemic had a small effect on the trend of obesity in the active component U.S. military and that obesity prevalence continues to increase.

Brief Report: Refractive Surgery Trends at Tri-Service Refractive Surgery Centers and the Impact of the COVID-19 Pandemic, Fiscal Years 2000–2020

Article
3/1/2022
Cover 3

Since the official introduction of laser refractive surgery into clinical practice throughout the Military Health System (MHS) in fiscal year 2000, these techniques have been heavily implemented in the tri-service community to better equip and improve the readiness of the U.S. military force.

Update: Malaria, U.S. Armed Forces, 2021

Article
3/1/2022
Cover 1

Malaria infection remains an important health threat to U.S. service members who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. In 2021, a total of 20 service members were diagnosed with or reported to have malaria.

Page 4 of 15 , showing items 46 - 60
First < 1 2 3 4 5  ... > Last 
Refine your search
Last Updated: October 05, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery