Skip to main content

Military Health System

Test of Sitewide Banner

This is a test of the sitewide banner capability. In the case of an emergency, site visitors would be able to visit the news page for addition information.

Brief Report: Refractive Surgery Trends at Tri-Service Refractive Surgery Centers and the Impact of the COVID-19 Pandemic, Fiscal Years 2000–2020

Image of Cover 3. Cadet Saverio Macrina, U.S. Military Academy West Point, receives corneal cross-linking procedure at Fort Belvoir Community Hospital, Va., Nov. 21, 2016. (DOD photo by Reese Brown)

Background

Since the official introduction of laser refractive surgery into clinical practice throughout the Military Health System (MHS) in fiscal year 2000, these techniques have been heavily implemented in the tri-service community to better equip and improve the readiness of the U.S. military force. Military studies of refractive surgery date back to 1993, but prior to full military utilization of laser refractive surgery, spectacles or contact lenses were the mainstay to correct refractive error among military personnel.1,2 Studies on the prevalence of refractive error, including myopia, hyperopia, and astigmatism, have shown that these conditions are quite common among active component service members.3,4 Reversing such error through refractive surgery has been documented to improve military readiness, operational capability, and the quality of life of U.S. service members.5

There are 26 Department of Defense (DOD) Warfighter Refractive Surgery Centers that offer a combination of vision-correcting procedures such as photorefractive keratectomy (PRK), laser assisted in situ keratomileusis (LASIK), laser epithelial keratomileusis (LASEK), small incision lenticule extraction (SMILE), implantable collamer lens (ICL), and refractive lens exchange (RLE).6–8 The capability to readily perform surgery with laser technology using the latest refractive surgery platforms highlights the importance of optimized vision to the DOD.

The COVID-19 pandemic introduced numerous obstacles which contributed to the reduction in the number of procedures performed. These obstacles included the closure of surgical centers and lack of temporary duty travel (TDY) patients. The pandemic also resulted in a shift to pre-operative testing for COVID-19 and virtual pre-operative briefings which could potentially result in delayed or cancelled refractive surgeries.

The objective of this report was to describe trends in total numbers of refractive surgeries over the last 21 fiscal years and to demonstrate how the early COVID-19 pandemic affected military refractive surgery trends.

Methods

Data on all refractive surgery cases performed at 26 DOD Warfighter Refractive Surgery Centers were compiled by the U.S. Navy refractive surgery program manager and presented at the 2021 virtual Military Refractive Surgery Safety and Standards Symposium annual meeting.6–8 These data are summarized in this report.

The surveillance period was from 1 Oct. 1999 through 30 Sept. 2020 (fiscal years 2000–2020). The surveillance population included active duty service members (active component and activated Reserve/Guard members) who met eligibility criteria for refractive eye surgery. Criteria for qualifying for refractive surgery may have differed among the services, but in general, service members had to have had at least 18 months left in their service commitments, a commander's authorization letter, and no adverse personnel actions. In addition, 3 Air Force locations performed refractive surgery on a small number of non-service member beneficiaries of the Military Health System as part of a research protocol (accounting for <0.03% of Air Force refractive surgical cases for fiscal year 2020).

Results

For fiscal years 2000–2020, a total of 746,950 refractive surgeries were reported from the 26 Warfighter Tri-Service Refractive Surgery Centers. The number of surgeries performed each fiscal year ranged from a low of 4,381 refractive surgeries in 2000 to a peak of 50,690 surgeries in 2005 (Figure 1) with an average of 35,569 surgeries per year. In fiscal year 2020, 20,270 refractive surgeries were performed which represents a 38.6% decrease from the number of cases performed in 2019 (n=33,039).

During the surveillance period, there were 363,058 surgeries performed at Army refractive centers, 216,568 at Navy refractive centers, and 167,324 at Air Force refractive centers. The number of surgeries for all services declined from fiscal year 2019 to fiscal year 2020 (Army, 39.8% decrease; Navy, 34.6% decrease; Air Force, 41.0% decrease) (Figure 1).

In 2020, the types of refractive surgery approximately consisted of 65.1% PRK (n=13,201), 27.6% LASIK/LASEK (n=5,585), 4.5% SMILE (n=920), 2.7% ICL (n=540), and 0.1% RLE (n=24) (Figure 2). The percentage distributions of type of refractive surgery were similar among all the services in 2020.

Editorial Comment

This report describes trends in the numbers of refractive surgeries performed during the 21 year surveillance period, including the COVID-19 pandemic. Since fiscal year 2000, the tri-service ophthalmology community conducted 746,950 vision corrective surgeries at 26 DOD Warfighter Refractive Surgery Centers. The large number of refractive cases reported and the amount of refractive surgery centers present in the DOD speaks to the valued importance of optimal vision in U.S. military members. In addition to the warfighter's improvement in quality of life, vision corrective surgeries are used frequently in the U.S. military due to the need and for improved preparedness and performance in operational tasks.3–5 An Air Force study from 2020 reported the prevalence of myopia in 767 Air Force Basic Military Trainees. Among the trainees, 45% were found to have myopia classified as greater than -0.5 D, and 2% of trainees were found to have high myopia classified as greater than -6.0 D.In 2019, Reynolds et al. reported that 51.1% of ocular care for service members during fiscal year 2018 was dedicated to refractive error-related disorders.9 A study published in 2017 demonstrated the excellent and comparable vision outcomes of Wave-Front Guided and Wave-Front Optimized PRK on military members in regard to marksmanship, visual performance, threshold target identification, and contrast sensitivity.10 These studies shed light on the importance of refractive surgery offered by the DOD.

When analyzing the effect of the COVID-19 pandemic, a decrease in the number of refractive surgery cases performed in the tri-service community was reported. Specifically, the total number of surgeries during fiscal year 2020 was comparable to the number of surgeries in fiscal year 2002, shortly after the procedures were first introduced. The pronounced decrease in the number of surgeries performed was undoubtedly due to factors related to the SARS-CoV-2 pandemic: shutdown of DOD Warfighter Refractive Surgery Centers, unavailability of TDY patients, pre-operative SARS-CoV-2 testing, difficulty with pre-operative virtual briefings, availability of N-95 masks, properly scheduling post-operative follow-up, and limitations on family members helping with patients after surgery. The reduced number of procedures observed in fiscal year 2020 is consistent with many published reports of reduced health care utilization during the COVID-19 pandemic.11 One such report demonstrated initial reduced demand for refractive surgery which subsequently rebounded in 2021.12

In fiscal year 2020, the majority of cases were PRK followed by LASIK/LASEK and SMILE, respectively. A trend toward PRK surgery in the military has been prevalent for years; however, there has been a shift towards LASIK especially among Navy surgery centers.13,14 Various reasons exist for the preference of PRK, which include surgeon's comfort with performing PRK over LASIK, previous military policies that prohibited LASIK for special forces, and the risk of traumatic corneal flap lifting following LASIK that cannot be attended to in an environment that is not readily equipped with an ophthalmologist (e.g., deployment, training, austere environments).15 With the introduction of SMILE in 2016 after the U.S. Food and Drug Administration approval, it has been increasingly implemented in the DOD.16 SMILE has shown promise with comparable, if not better, visual outcomes than PRK and more predictable outcomes and similar corneal biomechanical stability when compared to LASIK.17,18 The emergence of new refractive surgery techniques will continue to provide opportunity for advancement in military refractive surgery.

Limitations of this study include potential bias in data retrieval and documentation. Data were individually reported from each center and were not verified with medical coding. Additionally, refractive surgeries performed outside of Warfighter Refractive Surgery Centers were not captured in this analysis.

In summary, this report demonstrates the trend in refractive surgeries at the DOD Refractive Surgery Centers and reveals the decrease in refractive surgeries during the COVID-19 pandemic. Because of the instrumental role refractive surgery plays in gaining a strategic advantage for the U.S. military warfighter, surgical procedures still continued during this period and will most likely increase to pre-pandemic numbers as the COVID-related restrictions are lifted or conditions to handle COVID-related spread are improved. Future implications from the lessons learned during the COVID-19 pandemic will provide a framework on how to troubleshoot barriers to performing refractive surgery in the future.

Author affiliations: United States Air Force, Medical College of Georgia at Augusta University (2d Lt Brandon Sellers, BS); United States Air Force, Air Force Refractive Surgery Consultant, Joint Base Elmendorf-Richardson, Anchorage, AK (Lt Col J. Richard Townley, MD); United States Navy, Prior Navy Refractive Surgery Program Manager, Camp Lejeune, Jacksonville, NC (CAPT Corby Ropp, DO); United States Army, Army Refractive Surgery Program Manager, Defense Health Agency Refractive Surgery Board Chair, Brooke Army Medical Center, Ft. Sam Houston, TX (LTC Gary Legault, MD). Dr. Corby Ropp died during the creation of this manuscript but was instrumental in compiling the data.

Disclaimer: The contents, views, or opin­ions expressed in this publication are those of the author(s) and do not necessarily reflect the official policy or position of the Defense Health Agency, Department of Defense, or the U.S. Government.

References

  1. Lattimore MR, Jr., Schrimsher RH. Refractive error distribution and incidence among U.S. Army aviators. Mil Med. 1993;158(8):553–556.
  2. Hammond MD, Madigan WP, Jr., Bower KS. Refractive surgery in the United States Army, 2000-2003. Ophthalmology. 2005;112(2):184–190.
  3. Reynolds ME, Taubman SB, Stahlman S. Incidence and prevalence of selected refractive errors, active component, U.S. Armed Forces, 2001-2018. MSMR. 2019;26(9):26–30.
  4. Reed DS, Ferris LM, Santamaria J, et al. Prevalence of myopia in newly enlisted airmen at Joint Base San Antonio. Clin Ophthalmol. 2020;14:133–137.
  5. Sia RK, Ryan DS, Rivers BA, et al. Vision-related quality of life and perception of military readiness and capabilities following refractive surgery among active duty U.S. Military service members. J Refract Surg. 2018;34(9):597–603.
  6. Legault, GL. Army refractive surgery update. Military Refractive Surgery Safety and Standards Symposium, virtual. 1 January 2021.
  7. Townley, JR. Air Force refractive surgery update. Military Refractive Surgery Safety and Standards Symposium, virtual. 1 January 2021.
  8. Ropp, C. Navy refractive surgery update. Military Refractive Surgery Safety and Standards Symposium, virtual. 1 January 2021.
  9. Reynolds ME, Williams VF, Taubman SB, Stahlman S. Absolute and relative morbidity burdens attributable to ocular and vision-related conditions, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(9):4–11.
  10. Ryan DS, Sia RK, Stutzman RD, et al. Wavefront-guided versus wavefront-optimized photorefractive keratectomy: Visual and military task performance. Mil Med. 2017;182(1):e1636–e1644.
  11. Moynihan R, Sanders S, Michaleff ZA, et al. Impact of COVID-19 pandemic on utilisation of health care services: a systematic review. BMJ Open. 2021;11(3):e045343. 
  12. Bickford M, Rocha K. Impact of the COVID-19 pandemic on refractive surgery. Curr Ophthalmol Rep. 2021:1–6.
  13. Stanley PF, Tanzer DJ, Schallhorn SC. Laser refractive surgery in the United States Navy. Curr Opin Ophthalmol. 2008 Jul;19(4)321–324.
  14. Gao H, Miles TP, Troche R, et al. Quality of vision following LASIK and PRK-MMC for treatment of myopia. Mil Med. 2021;usab071.
  15. Shih LY, Peng KL, Chen JL. Traumatic displacement of laser in situ keratomileusis flaps: an integrated clinical case presentation. BMC Ophthalmol. 2021;21(1):177.
  16. Dishler JG, Slade S, Seifert S, Schallhorn SC. Small-incision lenticule extraction (SMILE) for the correction of myopia with astigmatism: Outcomes of the United States Food and Drug Administration Premarket Approval Clinical Trial. Ophthalmology. 2020;127(8):1020–1034.
  17. Sia RK, Ryan DS, Beydoun H, et al. Visual outcomes after SMILE from the first-year experience at a U.S. military refractive surgery center and comparison with PRK and LASIK outcomes. J Cataract Refract Surg. 2020;46(7):995–1002.
  18. Cao K, Liu L, Yu T, Chen F, Bai J, Liu T. Changes in corneal biomechanics during small-incision lenticule extraction (SMILE) and femtosecond-assisted laser in situ keratomileusis (FS-LASIK). Lasers Med Sci. 2020;35(3):599–609.

FIGURE 1. Number of refractive surgery cases, by service from a Tri-Service Refractive Surgery Center, fiscal years 2000–2020

FIGURE 2. Refractive surgery cases, by service and type of procedure performed at a Tri- Service Refraction Surgery Center, fiscal year 2020

You also may be interested in...

Medical evacuations out of the U.S. Central Command, active and reserve components, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 3

The number of medical evacuations for battle injuries has decreased considerably since 2014. Most medical evacuations in 2018 were attributed to mental health disorders, followed by non-battle injury/poisoning; signs, symptoms, and ill-defined conditions; musculoskeletal disorders; and digestive system disorders.

Hospitalizations, active component, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 2

As in prior years, mental health disorders, pregnancy-related conditions, and injury/poisoning accounted for the majority (59.8%) of all hospitalizations among active component service members in 2018. However, the hospitalization rate for all causes was the lowest rate in the past 10 years.

Absolute and relative morbidity burdens attributable to various illnesses and injuries, non-service member beneficiaries of the Military Health System, 2018

Article
5/1/2019
Cover 4

In 2018, mental health disorders accounted for the largest proportions of the morbidity and healthcare burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 years, musculoskeletal diseases accounted for the most morbidity and health care burdens, and among adults aged 65 years or older, cardiovascular diseases accounted for the most.

Surveillance Snapshot: Illness and Injury Burdens, Reserve Component, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 2

Surveillance Snapshot: Illness and Injury Burdens, Recruit Trainees, Active Component, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 2

Morbidity burdens attributable to various illnesses and injuries, deployed active and reserve component service members, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 1

Among service members deployed during 2018, injury/poisoning, musculoskeletal diseases, and signs/symptoms accounted for more than half of the total health care burden while deployed. Compared to the distribution of major burden of disease categories documented in garrison, a relatively greater proportion of in-theater medical encounters due to respiratory infections, skin diseases, infectious/parasitic diseases, and digestive diseases was documented.

Ambulatory visits, active component, U.S. Armed Forces, 2018

Article
5/1/2019
Cover 1

Musculoskeletal disorders and mental health disorders accounted for more than half (52.6%) of all illness- and injury-related ambulatory encounters among active component service members in 2018. Since 2014, the number of ambulatory visits for mental health disorders has decreased, while the numbers of ambulatory visits for musculoskeletal system/connective tissue disorders, nervous system and sense organ disorders, and respiratory system disorders have increased.

Modeling Lyme Disease Host Animal Habitat Suitability, West Point, New York

Article
4/1/2019
A deer basks in the morning sun at Joint Base San Antonio-Fort Sam Houston, Texas.  (Photo Courtesy: U.S. Air Force)

As the most frequently reported vector-borne disease among active component U.S. service members, with an incidence rate of 16 cases per 100,000 person-years in 2011, Lyme disease poses both a challenge to health care providers in the Military Health System and a threat to military readiness. Spread through the bite of an infected blacklegged tick, infection with the bacterial cause of Lyme disease can have lasting effects that may lead to medical discharge from the military. The U.S. Military Academy at West Point is situated in a highly endemic area in New York State. To identify probable areas where West Point cadets as well as active duty service members stationed at West Point and their families might contract Lyme disease, this study used Geographic Information System mapping methods and remote sensing data to replicate an established spatial model to identify the likely habitat of a key host animal—the white-tailed deer.

Incidence, Timing, and Seasonal Patterns of Heat Illnesses During U.S. Army Basic Combat Training, 2014–2018

Article
4/1/2019
U.S. Marines participate in morning physical training during a field exercise at Marine Corps Base Camp Pendleton, California. (Photo Courtesy: U.S. Marine Corps)

Risk factors for heat illnesses (HIs) among new soldiers include exercise intensity, environmental conditions at the time of exercise, a high body mass index, and conducting initial entry training during hot and humid weather when recruits are not yet acclimated to physical exertion in heat. This study used data from the Defense Health Agency’s–Weather-Related Injury Repository to calculate rates and to describe the incidence, timing, and geographic distribution of HIs among soldiers during U.S. Army basic combat training (BCT). From 2014 through 2018, HI events occurred in 1,210 trainees during BCT, resulting in an overall rate of 3.6 per 10,000 BCT person-weeks (p-wks) (95% CI: 3.4–3.8). HI rates (cases per 10,000 BCT p-wks) varied among the 4 Army BCT sites: Fort Benning, GA (6.8); Fort Jackson, SC (4.4); Fort Sill, OK (1.8); and Fort Leonard Wood, MO (1.7). Although the highest rates ofHIs occurred at Fort Benning, recruits in all geographic areas were at risk. The highest rates of HI occurred during the peak training months of June through Sept., and over half of all HI cases affected soldiers during the first 3 weeks of BCT. Prevention of HI among BCT soldiers requires relevant training of both recruits and cadre as well as the implementation of effective preventive measures.

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2003–2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

From 2003 through 2018, there were 1,579 incident diagnoses of exertional hyponatremia among active component service members, for a crude overall incidence rate of 7.2 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, females, those less than 20 years old, and recruit trainees had higher overall incidence rates of exertional hyponatremia diagnoses. The overall incidence rate during the 16-year period was highest in the Marine Corps, intermediate in the Army and Air Force, and lowest in the Navy. Overall rates during the surveillance period were highest among Asian/Pacific Islander and non-Hispanic white service members and lowest among non-Hispanic black service members. Between 2003 and 2018, crude annual incidence rates of exertional hyponatremia peaked in 2010 (12.7 per 100,000 p-yrs) and then decreased to 5.3 cases per 100,000 p-yrs in 2013 before increasing in 2014 and 2015. The crude annual rate in 2018 (6.3 per 100,000 p-yrs) represented a decrease of 26.5% from 2015. Service members and their supervisors must be knowledgeable of the dangers of excessive water consumption and the prescribed limits for water intake during prolonged physical activity (e.g., field training exercises, personal fitness training, and recreational activities) in hot, humid weather.

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

Article
4/1/2019
U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine Corps and Army members, and those in combat-specific or “other/unknown” occupations. During 2014–2018, crude rates of exertional rhabdomyolysis increased steadily from 2014 through 2016 after which rates declined slightly in 2017 before increasing again in 2018. Compared to service members in other race/ethnicity groups, the overall rate of exertional rhabdomyolysis was highest among non-Hispanic blacks in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke diagnoses were highest among males and service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. Subgroup-specific incidence rates of heat exhaustion diagnoses in 2018 were notably higher among service members less than 20 years old, Asian/Pacific Islanders, Army and Marine Corps members, recruit trainees, and service members in combat-specific occupations. During 2014–2018, a total of 325 heat illnesses were documented among service members in Iraq and Afghanistan; 8.6% (n=28) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Testosterone

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Page 14 of 15 , showing items 196 - 210
First < ... 11 12 13 14 15 > Last 
Refine your search
Last Updated: October 18, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery