Skip to main content

Military Health System

Evaluation of ICD-10-CM-based Case Definitions of Ambulatory Encounters for COVID-19 Among Department of Defense Health Care Beneficiaries

Image of SEATTLE, WA, UNITED STATES 04.05.2020 U.S. Army Maj. Neil Alcaria is screened at the Seattle Event Center in Wash., April 5. Soldiers from Fort Carson, Colo., and Joint Base Lewis-McChord, Wash. have established an Army field hospital center at the center in support of the Department of Defense COVID-19 response. U.S. Northern Command, through U.S. Army North, is providing military support to the Federal Emergency Management Agency to help communities in need. (U.S. Army photo by Cpl. Rachel Thicklin). SEATTLE, WA, UNITED STATES 04.05.2020 U.S. Army Maj. Neil Alcaria is screened at the Seattle Event Center in Wash., April 5. Soldiers from Fort Carson, Colo., and Joint Base Lewis-McChord, Wash. have established an Army field hospital center at the center in support of the Department of Defense COVID-19 response. U.S. Northern Command, through U.S. Army North, is providing military support to the Federal Emergency Management Agency to help communities in need. (U.S. Army photo by Cpl. Rachel Thicklin)

Recommended Content:

Medical Surveillance Monthly Report

Abstract

SARS-CoV-2 ICD-10-CM-based case definitions are lacking in the literature. This analysis was conducted to evaluate the performance metrics of 3 COVID-19 case definitions among Department of Defense (DOD) beneficiaries. SARS-CoV-2 tested specimens collected from 1 March 2020 to 28 February 2021 were matched to ambulatory medical encounters (68% match). The COVID-19 case definition (ICD-10-CM: U07.1) had high specificity (99%) and positive predictive value (PPV) (94%) but low to moderate (29%–66%) sensitivity. The COVID-specific case definition (10 additional codes added), had moderate to high specificity (82–93%), moderate sensitivity (65–75%), and low to moderate PPV (23%–77%). The COVID-like illness case definition (19 additional codes added to the COVID-specific definition), had moderate specificity (65%–86%), moderate sensitivity (76%–79%), and low to moderate PPV (15%–62%). Regardless of the case definition, all metrics improved over the surveillance period. The COVID-19 case definition is ideal for studies that need to ensure all cases are true positives. However, for broad surveillance efforts, the COVID-specific case definition may be the best to maximize specificity without a large decrease in sensitivity and PPV.

What are the new findings?

This is the first evaluation of ICD-10-CM-based cased definitions for COVID-19 surveillance among DOD health care beneficiaries. The 3 case definitions ranged from highly specific to a lower specificity, but improved balance between sensitivity and specificity.

What is the impact on readiness and force health protection?

The development and use of these ICD-10-CM case definitions should improve the DOD’s ability to provide comprehensive population level COVID-19 surveillance and will allow the DOD to better assess the spread and impact of COVID-19 among military beneficiaries.

Background

The emergence of SARS-CoV-2 in 2019 and the rapid global spread of the virus throughout 2020 and 2021 required quick implementation and development of clinical, laboratory, and epidemiologic surveillance efforts to identify, track, and mitigate the virus. Prior to 1 April 2020, ICD-10-CM coding guidance for SARS-CoV-2 associated medical encounters was not available. In April of 2020, the Centers for Disease Control and Prevention (CDC) released official ICD-10-CM coding and reporting guidelines for use in the U.S. for a confirmed diagnosis of COVID-19.1 However, a report on the early use of U07.1 within the DOD, found that 30% of the encounters evaluated did not meet the criteria for COVID-19 and incorrectly documented encounters for recruit screening for COVID-19 as opposed to an actual infection.2 However, the report also found a lack of full capture of laboratory results within the DOD, which warrants consideration of alternative methods of case identification, such as validated standardized ICD-10-CM case definitions. A review of the current literature found a paucity of data on administrative case definitions for COVID-19, with most publications evaluating case definitions using symptom reporting as opposed to ICD-10-CM coding or studies focusing solely on U07.1.3–8 Therefore, to enhance the DOD’s ability to conduct COVID-19 surveillance among the military population as a whole, this study was conducted to evaluate 3 ICD-10-CM-based case definitions for COVID-19 and COVID-like illnesses for ambulatory encounters.

Methods

The study population consisted of all DOD health care beneficiaries who had a specimen collected between 1 March 2020 and 28 February 2021 for SARS-CoV-2 laboratory testing. Standardized laboratory data were provided by the Navy and Marine Corps Public Health Center (NMCPHC). Only laboratory tests reported through the Composite Health Care System (CHCS) or MHS GENESIS were captured in the study. Eligible SARS-CoV-2 laboratory tests included both polymerase chain reaction (PCR) and antigen tests. The analysis allowed for 1 specimen per day per individual, preferentially selecting a specimen with a positive result over a negative result over an unknown result.

Data from the Defense Medical Surveillance System (DMSS) were used to match each laboratory test to a single ambulatory medical encounter occurring within 7 days before or after the tested specimen collection date.9 If more than 1 encounter was temporally associated with a laboratory test, the priority for selection was given to encounters with a COVID-19 diagnostic code, COVID-specific diagnostic code, a COVID-like illness (CLI) diagnostic code, and then any other encounter (Table 1). Laboratory tests without a matching encounter were excluded from the sensitivity/specificity analysis.

The surveillance period was partitioned into 4 separate periods for the analysis: 1 March 2020–31 May 2020, 1 June 2020–31 August 2020, 1 September 2020–30 November 2020, and 1 December 2020–28 February 2021. This partitioning was done to account for changing availability of ICD-10 codes and coding practices over the course of the first year of the COVID-19 pandemic. For each period, the percentage of laboratory tests that matched to any medical encounter was calculated. Three COVID-19 case definitions were evaluated in the analysis; COVID-19, COVID-specific, and CLI case definitions (Table 1). The case definitions were not mutually exclusive, but rather expanded upon the prior case definition. The case definitions were developed early in the pandemic by Armed Forces Health Surveillance Division (AFHSD) physicians and epidemiologists using interim clinical case definitions proposed by the CDC and expert knowledge, which incorporated random chart reviews of cases to better ascertain coding practices of DOD physicians.1 The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for each case definition and time period (Table 2).

Results

A total of 2,425,501 SARS-CoV-2 laboratory tests were identified for the entire study period. The lowest number of tests were conducted in the March–May 2020 time period (155,297 tests) and the highest number were conducted in the September–November 2020 time period (828,669 tests) (Table 3). Overall, 68.1% of laboratory tests were matched to medical encounters. A higher percentage of positive laboratory tests (85.7%) were matched to ambulatory medical encounters than negative laboratory tests (65.9%). The percentages of laboratory tests that matched to medical encounters were relatively similar across time periods, with the exception of positive laboratory tests, for which only 62.5% matched to encounters in the first time period, while about 87% matched to encounters in the 3 later time periods.

Among laboratory tests that matched to medical encounters, the 3 COVID-19 case definitions were evaluated for sensitivity, specificity, PPV and NPV during each of the 4 time periods. NPV was high regardless of the time period or case definition (Tables 4–6). As expected, the COVID-19 case definition had very high specificity (98.6%–99.2%) regardless of the time period. However, the sensitivity of this case definition ranged from low (28.9%) in March–May 2020 to moderate (66.5%) in December–February 2021 (Table 4). The PPV of the COVID-19 case definition also increased through the first year of the pandemic; from 62.6% during the first period to 94.2% during the last period evaluated. 

The sensitivity, specificity, and PPV of the COVID-specific case definition all increased over time (Table 5). The sensitivity of this case definition was moderate during the first period (65.1%) and increased to moderately high (75.4%) during the last period. The specificity was moderately high during the first period (81.6%) and increased to be high (93.3%) during the last period. The PPV of this case definition was very poor (22.8%) early in the pandemic, but improved to a moderately high level (76.5%) during the last period of surveillance.

The broadest of the 3 case definitions, CLI, had the highest sensitivity (range=75.5%–79.2%) compared to the other case definitions, but it was only slightly higher than the COVID-specific case definition (Table 6). As expected, specificity was lowest among the CLI case definition compared to the other case definitions. The specificity of this case definition ranged from 64.9% during the first period to 86.0% during the last period. The PPV was very low during the first period (15.3%), but increased to a moderate level (62.1%) by the last period of surveillance.

Editorial Comment

As the COVID-19 pandemic expanded in the U.S. in March 2020, surveillance, diagnosis, and tracking efforts were rapidly deployed and evolved. With the addition of new ICD-10-CM codes for COVID-19 and guidance for their use, it was crucial to develop and evaluate various ICD-10-CM based case definitions to allow for accurate, population-level surveillance of COVID-19. This study evaluated 3 COVID-19 case definitions to determine and compare their sensitivity, specificity, and PPV.

Two-thirds of laboratory tests could be matched to ambulatory encounters. Given that there were multiple locations where individuals could be tested for the SARSCoV-2 virus (e.g., medical offices, pharmacies, drive-thru testing locations), many of which would not be linked to an ambulatory medical encounter, this finding is not surprising. However, positive laboratory tests were more likely to have an associated ambulatory encounter than negative tests. This finding indicates that individuals who tested positive may have symptoms requiring medical treatment or consultation with a medical provider.

Results were as expected, with the highest specificity and PPV occurring with the most specific case definition of U07.1. The CDC issued official coding and reporting guidelines to use this code for a confirmed diagnosis of COVID-19.1 The timing of this release, 1 April 2020, aligns with the finding of lower sensitivity and PPV of this code during the March–May 2020 period, when this code may not have been available to all providers and/or training on its use was being rolled out. One study found that it took 2 weeks for U07.1 to be widely used for COVID-19 hospitalizations in the U.S.6 The PPV of U07.1 for the entire study period, 91.0%, was higher than a previous publication among Veterans Affairs outpatient encounters, which reported PPV to be 77.7% during a similar time period.7 Although published studies on the sensitivity and specificity of U07.1 among ambulatory encounters were not available at the time of this report, there have been 2 publications among hospitalizations: 1 among adults and 1 among a pediatric population.6,8 All studies found high specificity of the code (current study: 98.9%, adult study: 99.0%, pediatric study: 99.9%). However, the hospitalization studies found much higher sensitivity of U07.1 (adult study: 98.0%; pediatric study: 89.7%) compared to the current ambulatory encounter sensitivity (66.5% during the last period). This difference may be due to the fact that inpatient encounters require a nosologist (an individual who specializes in the systemic classification of diseases) to generate the discharge diagnoses, whereas this is not necessarily done with ambulatory encounters. Additionally, medical providers may not have laboratory test results available when generating ambulatory encounter diagnostic codes and therefore may have been hesitant to code U07.1 without laboratory confirmation.

With the addition of more ICD-10-CM codes for the COVID-specific and CLI case definitions, sensitivity increased, but at the expense of specificity and PPV. These case definitions provided a better balance between sensitivity and specificity compared to standardized case definitions used for other respiratory infections, such as influenza-like illness, which had very high sensitivity (92–93%), but very low specificity (26–30%).10 However, none of the COVID-19 case definitions reached a sensitivity as high as the influenza-like-illness definitions. This may be due to a larger variety of ICD-10 codes being used by providers, especially early in the pandemic, and the more diverse symptoms associated with COVID-19 cases compared to influenza cases.11–13

This analysis was limited to medical encounters for which SARS-CoV-2 tests were ordered at military treatment facilities. As multiple SARS-CoV-2 testing locations were available, separate from MTFs, there is the possibility that the study population was not representative of DoD beneficiaries tested for SARS-CoV-2 during this time period. Additionally, the analysis required a medical encounter, so asymptomatic and non-medically attended individuals will not be captured in this analysis and should be considered a gap in surveillance utilizing ICD-10-CM case definitions. However, with those limitations, this analysis was able to provide data on a population level that can be used to enhance public health surveillance of COVID-19 cases. Improved surveillance for COVID-19 can provide a more accurate assessment of the burden of disease and the impact on military readiness among service members. As with all surveillance efforts, decisions on the most appropriate case definition to use need to incorporate an understanding of the data sources being used, the population being studied, and the purpose of the surveillance.

Author affiliations: Defense Health Agency, Armed Forces Health Surveillance Division, Silver Spring, MD (Dr. Eick-Cost, Ms. Fedgo).

References

1. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19) 2020 interim case definition, Approved April 5, 2020. Accessed 19 Jan 2022. https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2020

2. Clausen S, Stahlman S, Cost A. Early use of ICD-10-CM code “U07.1, COVID-19” to identify 2019 novel coronavirus cases in Military Health System administrative data. MSMR. 2000;27(05):55–59.

3. Pulia MS, Hekman DJ, Glazer JM, et al. Electronic health record-based surveillance for community transmitted COVID-19 in the emergency department. West J Emerg Med. 2020;21(4):748–751.

4. Crabb BT, Lyons A, Bale M, et al. Comparison of International Classification of Diseases and related health problems, tenth revision codes with electronic medical records among patients with symptoms of coronavirus disease 2019. JAMA Netw Open. 2020;3(8):e2017703.

5. Kluberg SA, Hou L, Dutcher SK, et al. Validation of diagnosis codes to identify hospitalized COVID-19 patients in health care claims data [published online ahead of print, 2021 Dec 16]. Pharmacoepidemiol Drug Saf. 2021;10.1002/pds.5401.

6. Kadri SS, Gundrum J, Warner S, et al. Uptake and accuracy of the diagnosis code for COVID-19 among US hospitalizations. JAMA. 2020;324(24):2553–2554.

7. Lynch KE, Viernes B, Gatsby E, et al. Positive predictive value of COVID-19 ICD-10 diagnosis codes across calendar time and clinical setting. Clin Epidemiol. 2021;13:1011–1018.

8. Blatz AM, David MZ, Otto WR, Luan X, Gerber JS. Validation of International Classification of Disease-10 code for identifying children hospitalized with coronavirus disease-2019. J Pediatric Infect Dis Soc. 2021;10(4):547–548.

9. Rubertone MV, Brundage JF. The Defense Medical Surveillance System and the Department of Defense serum repository: glimpses of the future of public health surveillance. Am J Public Health. 2002;92(12):1900–1904.

10. Eick-Cost AA, Hunt DJ. Assessment of ICD-9-based case definitions for influenza-like illness surveillance. MSMR. 2015;22(9):2–7.

11. Mayo Clinic. Unusual coronovirus (COVID-19) symptoms: What are they? Accessed 26 Jan 2022. https://www.mayoclinic.org/diseases-conditions/coronavirus/expert-answers/coronavirus-unusualsymptoms/faq-20487367

12. Centers for Disease Control and Prevention. Symptoms of COVID-19. Accessed 26 Jan 2022. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html

13. Burke RM, Killerby ME, Newton S, et al. Symptom profiles of a convenience sample of patients with COVID-19 - United States, January-April 2020. MMWR Morb Mortal Wkly Rep. 2020;69(28):904–908.

TABLE 1. ICD-10-CM codes for SARS-CoV-2 case definitions

TABLE 2. Definitions used for calculation of sensitivity, specificity, NPV and PPV

TABLE 3. Matching of SARS-CoV-2 laboratory tests to ambulatory medical encounters by time period and result

TABLE 4. Sensitivity and specificity of the COVID-19 case definitiona among laboratory tests that matched to ambulatory medical encounters

TABLE 5. Sensitivity and specificity of the COVID-specific case definitiona among laboratory tests that matched to ambulatory medical encounters

TABLE 6. Sensitivity and specificity of the COVID-like-illness (CLI) case definitiona among laboratory tests that matched to ambulatory medical encounters

You also may be interested in...

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2003–2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

From 2003 through 2018, there were 1,579 incident diagnoses of exertional hyponatremia among active component service members, for a crude overall incidence rate of 7.2 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, females, those less than 20 years old, and recruit trainees had higher overall incidence rates of exertional hyponatremia diagnoses. The overall incidence rate during the 16-year period was highest in the Marine Corps, intermediate in the Army and Air Force, and lowest in the Navy. Overall rates during the surveillance period were highest among Asian/Pacific Islander and non-Hispanic white service members and lowest among non-Hispanic black service members. Between 2003 and 2018, crude annual incidence rates of exertional hyponatremia peaked in 2010 (12.7 per 100,000 p-yrs) and then decreased to 5.3 cases per 100,000 p-yrs in 2013 before increasing in 2014 and 2015. The crude annual rate in 2018 (6.3 per 100,000 p-yrs) represented a decrease of 26.5% from 2015. Service members and their supervisors must be knowledgeable of the dangers of excessive water consumption and the prescribed limits for water intake during prolonged physical activity (e.g., field training exercises, personal fitness training, and recreational activities) in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

Article
4/1/2019
U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine Corps and Army members, and those in combat-specific or “other/unknown” occupations. During 2014–2018, crude rates of exertional rhabdomyolysis increased steadily from 2014 through 2016 after which rates declined slightly in 2017 before increasing again in 2018. Compared to service members in other race/ethnicity groups, the overall rate of exertional rhabdomyolysis was highest among non-Hispanic blacks in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Recommended Content:

Medical Surveillance Monthly Report

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image.

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During Aug.–Sept. 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 Aug.–11 Sept. 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing's syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report
<< < ... 11 12 13 > >> 
Showing results 181 - 193 Page 13 of 13
Refine your search
Last Updated: August 17, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery